LAPACK  3.8.0
LAPACK: Linear Algebra PACKage

◆ zung2r()

subroutine zung2r ( integer  M,
integer  N,
integer  K,
complex*16, dimension( lda, * )  A,
integer  LDA,
complex*16, dimension( * )  TAU,
complex*16, dimension( * )  WORK,
integer  INFO 
)

ZUNG2R

Download ZUNG2R + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 ZUNG2R generates an m by n complex matrix Q with orthonormal columns,
 which is defined as the first n columns of a product of k elementary
 reflectors of order m

       Q  =  H(1) H(2) . . . H(k)

 as returned by ZGEQRF.
Parameters
[in]M
          M is INTEGER
          The number of rows of the matrix Q. M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix Q. M >= N >= 0.
[in]K
          K is INTEGER
          The number of elementary reflectors whose product defines the
          matrix Q. N >= K >= 0.
[in,out]A
          A is COMPLEX*16 array, dimension (LDA,N)
          On entry, the i-th column must contain the vector which
          defines the elementary reflector H(i), for i = 1,2,...,k, as
          returned by ZGEQRF in the first k columns of its array
          argument A.
          On exit, the m by n matrix Q.
[in]LDA
          LDA is INTEGER
          The first dimension of the array A. LDA >= max(1,M).
[in]TAU
          TAU is COMPLEX*16 array, dimension (K)
          TAU(i) must contain the scalar factor of the elementary
          reflector H(i), as returned by ZGEQRF.
[out]WORK
          WORK is COMPLEX*16 array, dimension (N)
[out]INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument has an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
December 2016

Definition at line 116 of file zung2r.f.

116 *
117 * -- LAPACK computational routine (version 3.7.0) --
118 * -- LAPACK is a software package provided by Univ. of Tennessee, --
119 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
120 * December 2016
121 *
122 * .. Scalar Arguments ..
123  INTEGER info, k, lda, m, n
124 * ..
125 * .. Array Arguments ..
126  COMPLEX*16 a( lda, * ), tau( * ), work( * )
127 * ..
128 *
129 * =====================================================================
130 *
131 * .. Parameters ..
132  COMPLEX*16 one, zero
133  parameter( one = ( 1.0d+0, 0.0d+0 ),
134  $ zero = ( 0.0d+0, 0.0d+0 ) )
135 * ..
136 * .. Local Scalars ..
137  INTEGER i, j, l
138 * ..
139 * .. External Subroutines ..
140  EXTERNAL xerbla, zlarf, zscal
141 * ..
142 * .. Intrinsic Functions ..
143  INTRINSIC max
144 * ..
145 * .. Executable Statements ..
146 *
147 * Test the input arguments
148 *
149  info = 0
150  IF( m.LT.0 ) THEN
151  info = -1
152  ELSE IF( n.LT.0 .OR. n.GT.m ) THEN
153  info = -2
154  ELSE IF( k.LT.0 .OR. k.GT.n ) THEN
155  info = -3
156  ELSE IF( lda.LT.max( 1, m ) ) THEN
157  info = -5
158  END IF
159  IF( info.NE.0 ) THEN
160  CALL xerbla( 'ZUNG2R', -info )
161  RETURN
162  END IF
163 *
164 * Quick return if possible
165 *
166  IF( n.LE.0 )
167  $ RETURN
168 *
169 * Initialise columns k+1:n to columns of the unit matrix
170 *
171  DO 20 j = k + 1, n
172  DO 10 l = 1, m
173  a( l, j ) = zero
174  10 CONTINUE
175  a( j, j ) = one
176  20 CONTINUE
177 *
178  DO 40 i = k, 1, -1
179 *
180 * Apply H(i) to A(i:m,i:n) from the left
181 *
182  IF( i.LT.n ) THEN
183  a( i, i ) = one
184  CALL zlarf( 'Left', m-i+1, n-i, a( i, i ), 1, tau( i ),
185  $ a( i, i+1 ), lda, work )
186  END IF
187  IF( i.LT.m )
188  $ CALL zscal( m-i, -tau( i ), a( i+1, i ), 1 )
189  a( i, i ) = one - tau( i )
190 *
191 * Set A(1:i-1,i) to zero
192 *
193  DO 30 l = 1, i - 1
194  a( l, i ) = zero
195  30 CONTINUE
196  40 CONTINUE
197  RETURN
198 *
199 * End of ZUNG2R
200 *
subroutine zlarf(SIDE, M, N, V, INCV, TAU, C, LDC, WORK)
ZLARF applies an elementary reflector to a general rectangular matrix.
Definition: zlarf.f:130
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
subroutine zscal(N, ZA, ZX, INCX)
ZSCAL
Definition: zscal.f:80
Here is the call graph for this function:
Here is the caller graph for this function: