 LAPACK  3.6.1 LAPACK: Linear Algebra PACKage
 subroutine sgeqp3 ( integer M, integer N, real, dimension( lda, * ) A, integer LDA, integer, dimension( * ) JPVT, real, dimension( * ) TAU, real, dimension( * ) WORK, integer LWORK, integer INFO )

SGEQP3

Purpose:
``` SGEQP3 computes a QR factorization with column pivoting of a
matrix A:  A*P = Q*R  using Level 3 BLAS.```
Parameters
 [in] M ``` M is INTEGER The number of rows of the matrix A. M >= 0.``` [in] N ``` N is INTEGER The number of columns of the matrix A. N >= 0.``` [in,out] A ``` A is REAL array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, the upper triangle of the array contains the min(M,N)-by-N upper trapezoidal matrix R; the elements below the diagonal, together with the array TAU, represent the orthogonal matrix Q as a product of min(M,N) elementary reflectors.``` [in] LDA ``` LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M).``` [in,out] JPVT ``` JPVT is INTEGER array, dimension (N) On entry, if JPVT(J).ne.0, the J-th column of A is permuted to the front of A*P (a leading column); if JPVT(J)=0, the J-th column of A is a free column. On exit, if JPVT(J)=K, then the J-th column of A*P was the the K-th column of A.``` [out] TAU ``` TAU is REAL array, dimension (min(M,N)) The scalar factors of the elementary reflectors.``` [out] WORK ``` WORK is REAL array, dimension (MAX(1,LWORK)) On exit, if INFO=0, WORK(1) returns the optimal LWORK.``` [in] LWORK ``` LWORK is INTEGER The dimension of the array WORK. LWORK >= 3*N+1. For optimal performance LWORK >= 2*N+( N+1 )*NB, where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.``` [out] INFO ``` INFO is INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value.```
Date
November 2015
Further Details:
```  The matrix Q is represented as a product of elementary reflectors

Q = H(1) H(2) . . . H(k), where k = min(m,n).

Each H(i) has the form

H(i) = I - tau * v * v**T

where tau is a real scalar, and v is a real/complex vector
with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in
A(i+1:m,i), and tau in TAU(i).```
Contributors:
G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain X. Sun, Computer Science Dept., Duke University, USA

Definition at line 153 of file sgeqp3.f.

153 *
154 * -- LAPACK computational routine (version 3.6.0) --
155 * -- LAPACK is a software package provided by Univ. of Tennessee, --
156 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
157 * November 2015
158 *
159 * .. Scalar Arguments ..
160  INTEGER info, lda, lwork, m, n
161 * ..
162 * .. Array Arguments ..
163  INTEGER jpvt( * )
164  REAL a( lda, * ), tau( * ), work( * )
165 * ..
166 *
167 * =====================================================================
168 *
169 * .. Parameters ..
170  INTEGER inb, inbmin, ixover
171  parameter ( inb = 1, inbmin = 2, ixover = 3 )
172 * ..
173 * .. Local Scalars ..
174  LOGICAL lquery
175  INTEGER fjb, iws, j, jb, lwkopt, minmn, minws, na, nb,
176  \$ nbmin, nfxd, nx, sm, sminmn, sn, topbmn
177 * ..
178 * .. External Subroutines ..
179  EXTERNAL sgeqrf, slaqp2, slaqps, sormqr, sswap, xerbla
180 * ..
181 * .. External Functions ..
182  INTEGER ilaenv
183  REAL snrm2
184  EXTERNAL ilaenv, snrm2
185 * ..
186 * .. Intrinsic Functions ..
187  INTRINSIC int, max, min
188 * Test input arguments
189 * ====================
190 *
191  info = 0
192  lquery = ( lwork.EQ.-1 )
193  IF( m.LT.0 ) THEN
194  info = -1
195  ELSE IF( n.LT.0 ) THEN
196  info = -2
197  ELSE IF( lda.LT.max( 1, m ) ) THEN
198  info = -4
199  END IF
200 *
201  IF( info.EQ.0 ) THEN
202  minmn = min( m, n )
203  IF( minmn.EQ.0 ) THEN
204  iws = 1
205  lwkopt = 1
206  ELSE
207  iws = 3*n + 1
208  nb = ilaenv( inb, 'SGEQRF', ' ', m, n, -1, -1 )
209  lwkopt = 2*n + ( n + 1 )*nb
210  END IF
211  work( 1 ) = lwkopt
212 *
213  IF( ( lwork.LT.iws ) .AND. .NOT.lquery ) THEN
214  info = -8
215  END IF
216  END IF
217 *
218  IF( info.NE.0 ) THEN
219  CALL xerbla( 'SGEQP3', -info )
220  RETURN
221  ELSE IF( lquery ) THEN
222  RETURN
223  END IF
224 *
225 * Move initial columns up front.
226 *
227  nfxd = 1
228  DO 10 j = 1, n
229  IF( jpvt( j ).NE.0 ) THEN
230  IF( j.NE.nfxd ) THEN
231  CALL sswap( m, a( 1, j ), 1, a( 1, nfxd ), 1 )
232  jpvt( j ) = jpvt( nfxd )
233  jpvt( nfxd ) = j
234  ELSE
235  jpvt( j ) = j
236  END IF
237  nfxd = nfxd + 1
238  ELSE
239  jpvt( j ) = j
240  END IF
241  10 CONTINUE
242  nfxd = nfxd - 1
243 *
244 * Factorize fixed columns
245 * =======================
246 *
247 * Compute the QR factorization of fixed columns and update
248 * remaining columns.
249 *
250  IF( nfxd.GT.0 ) THEN
251  na = min( m, nfxd )
252 *CC CALL SGEQR2( M, NA, A, LDA, TAU, WORK, INFO )
253  CALL sgeqrf( m, na, a, lda, tau, work, lwork, info )
254  iws = max( iws, int( work( 1 ) ) )
255  IF( na.LT.n ) THEN
256 *CC CALL SORM2R( 'Left', 'Transpose', M, N-NA, NA, A, LDA,
257 *CC \$ TAU, A( 1, NA+1 ), LDA, WORK, INFO )
258  CALL sormqr( 'Left', 'Transpose', m, n-na, na, a, lda, tau,
259  \$ a( 1, na+1 ), lda, work, lwork, info )
260  iws = max( iws, int( work( 1 ) ) )
261  END IF
262  END IF
263 *
264 * Factorize free columns
265 * ======================
266 *
267  IF( nfxd.LT.minmn ) THEN
268 *
269  sm = m - nfxd
270  sn = n - nfxd
271  sminmn = minmn - nfxd
272 *
273 * Determine the block size.
274 *
275  nb = ilaenv( inb, 'SGEQRF', ' ', sm, sn, -1, -1 )
276  nbmin = 2
277  nx = 0
278 *
279  IF( ( nb.GT.1 ) .AND. ( nb.LT.sminmn ) ) THEN
280 *
281 * Determine when to cross over from blocked to unblocked code.
282 *
283  nx = max( 0, ilaenv( ixover, 'SGEQRF', ' ', sm, sn, -1,
284  \$ -1 ) )
285 *
286 *
287  IF( nx.LT.sminmn ) THEN
288 *
289 * Determine if workspace is large enough for blocked code.
290 *
291  minws = 2*sn + ( sn+1 )*nb
292  iws = max( iws, minws )
293  IF( lwork.LT.minws ) THEN
294 *
295 * Not enough workspace to use optimal NB: Reduce NB and
296 * determine the minimum value of NB.
297 *
298  nb = ( lwork-2*sn ) / ( sn+1 )
299  nbmin = max( 2, ilaenv( inbmin, 'SGEQRF', ' ', sm, sn,
300  \$ -1, -1 ) )
301 *
302 *
303  END IF
304  END IF
305  END IF
306 *
307 * Initialize partial column norms. The first N elements of work
308 * store the exact column norms.
309 *
310  DO 20 j = nfxd + 1, n
311  work( j ) = snrm2( sm, a( nfxd+1, j ), 1 )
312  work( n+j ) = work( j )
313  20 CONTINUE
314 *
315  IF( ( nb.GE.nbmin ) .AND. ( nb.LT.sminmn ) .AND.
316  \$ ( nx.LT.sminmn ) ) THEN
317 *
318 * Use blocked code initially.
319 *
320  j = nfxd + 1
321 *
322 * Compute factorization: while loop.
323 *
324 *
325  topbmn = minmn - nx
326  30 CONTINUE
327  IF( j.LE.topbmn ) THEN
328  jb = min( nb, topbmn-j+1 )
329 *
330 * Factorize JB columns among columns J:N.
331 *
332  CALL slaqps( m, n-j+1, j-1, jb, fjb, a( 1, j ), lda,
333  \$ jpvt( j ), tau( j ), work( j ), work( n+j ),
334  \$ work( 2*n+1 ), work( 2*n+jb+1 ), n-j+1 )
335 *
336  j = j + fjb
337  GO TO 30
338  END IF
339  ELSE
340  j = nfxd + 1
341  END IF
342 *
343 * Use unblocked code to factor the last or only block.
344 *
345 *
346  IF( j.LE.minmn )
347  \$ CALL slaqp2( m, n-j+1, j-1, a( 1, j ), lda, jpvt( j ),
348  \$ tau( j ), work( j ), work( n+j ),
349  \$ work( 2*n+1 ) )
350 *
351  END IF
352 *
353  work( 1 ) = iws
354  RETURN
355 *
356 * End of SGEQP3
357 *
subroutine slaqp2(M, N, OFFSET, A, LDA, JPVT, TAU, VN1, VN2, WORK)
SLAQP2 computes a QR factorization with column pivoting of the matrix block.
Definition: slaqp2.f:151
subroutine sormqr(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO)
SORMQR
Definition: sormqr.f:170
subroutine sgeqrf(M, N, A, LDA, TAU, WORK, LWORK, INFO)
SGEQRF
Definition: sgeqrf.f:138
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
real function snrm2(N, X, INCX)
SNRM2
Definition: snrm2.f:56
subroutine slaqps(M, N, OFFSET, NB, KB, A, LDA, JPVT, TAU, VN1, VN2, AUXV, F, LDF)
SLAQPS computes a step of QR factorization with column pivoting of a real m-by-n matrix A by using BL...
Definition: slaqps.f:180
integer function ilaenv(ISPEC, NAME, OPTS, N1, N2, N3, N4)
Definition: tstiee.f:83
subroutine sswap(N, SX, INCX, SY, INCY)
SSWAP
Definition: sswap.f:53

Here is the call graph for this function:

Here is the caller graph for this function: