LAPACK  3.6.1 LAPACK: Linear Algebra PACKage
 subroutine sdrvst ( integer NSIZES, integer, dimension( * ) NN, integer NTYPES, logical, dimension( * ) DOTYPE, integer, dimension( 4 ) ISEED, real THRESH, integer NOUNIT, real, dimension( lda, * ) A, integer LDA, real, dimension( * ) D1, real, dimension( * ) D2, real, dimension( * ) D3, real, dimension( * ) D4, real, dimension( * ) EVEIGS, real, dimension( * ) WA1, real, dimension( * ) WA2, real, dimension( * ) WA3, real, dimension( ldu, * ) U, integer LDU, real, dimension( ldu, * ) V, real, dimension( * ) TAU, real, dimension( ldu, * ) Z, real, dimension( * ) WORK, integer LWORK, integer, dimension( * ) IWORK, integer LIWORK, real, dimension( * ) RESULT, integer INFO )

SDRVST

Purpose:
```      SDRVST  checks the symmetric eigenvalue problem drivers.

SSTEV computes all eigenvalues and, optionally,
eigenvectors of a real symmetric tridiagonal matrix.

SSTEVX computes selected eigenvalues and, optionally,
eigenvectors of a real symmetric tridiagonal matrix.

SSTEVR computes selected eigenvalues and, optionally,
eigenvectors of a real symmetric tridiagonal matrix
using the Relatively Robust Representation where it can.

SSYEV computes all eigenvalues and, optionally,
eigenvectors of a real symmetric matrix.

SSYEVX computes selected eigenvalues and, optionally,
eigenvectors of a real symmetric matrix.

SSYEVR computes selected eigenvalues and, optionally,
eigenvectors of a real symmetric matrix
using the Relatively Robust Representation where it can.

SSPEV computes all eigenvalues and, optionally,
eigenvectors of a real symmetric matrix in packed
storage.

SSPEVX computes selected eigenvalues and, optionally,
eigenvectors of a real symmetric matrix in packed
storage.

SSBEV computes all eigenvalues and, optionally,
eigenvectors of a real symmetric band matrix.

SSBEVX computes selected eigenvalues and, optionally,
eigenvectors of a real symmetric band matrix.

SSYEVD computes all eigenvalues and, optionally,
eigenvectors of a real symmetric matrix using
a divide and conquer algorithm.

SSPEVD computes all eigenvalues and, optionally,
eigenvectors of a real symmetric matrix in packed
storage, using a divide and conquer algorithm.

SSBEVD computes all eigenvalues and, optionally,
eigenvectors of a real symmetric band matrix,
using a divide and conquer algorithm.

When SDRVST is called, a number of matrix "sizes" ("n's") and a
number of matrix "types" are specified.  For each size ("n")
and each type of matrix, one matrix will be generated and used
to test the appropriate drivers.  For each matrix and each
driver routine called, the following tests will be performed:

(1)     | A - Z D Z' | / ( |A| n ulp )

(2)     | I - Z Z' | / ( n ulp )

(3)     | D1 - D2 | / ( |D1| ulp )

where Z is the matrix of eigenvectors returned when the
eigenvector option is given and D1 and D2 are the eigenvalues
returned with and without the eigenvector option.

The "sizes" are specified by an array NN(1:NSIZES); the value of
each element NN(j) specifies one size.
The "types" are specified by a logical array DOTYPE( 1:NTYPES );
if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
Currently, the list of possible types is:

(1)  The zero matrix.
(2)  The identity matrix.

(3)  A diagonal matrix with evenly spaced eigenvalues
1, ..., ULP  and random signs.
(ULP = (first number larger than 1) - 1 )
(4)  A diagonal matrix with geometrically spaced eigenvalues
1, ..., ULP  and random signs.
(5)  A diagonal matrix with "clustered" eigenvalues
1, ULP, ..., ULP and random signs.

(6)  Same as (4), but multiplied by SQRT( overflow threshold )
(7)  Same as (4), but multiplied by SQRT( underflow threshold )

(8)  A matrix of the form  U' D U, where U is orthogonal and
D has evenly spaced entries 1, ..., ULP with random signs
on the diagonal.

(9)  A matrix of the form  U' D U, where U is orthogonal and
D has geometrically spaced entries 1, ..., ULP with random
signs on the diagonal.

(10) A matrix of the form  U' D U, where U is orthogonal and
D has "clustered" entries 1, ULP,..., ULP with random
signs on the diagonal.

(11) Same as (8), but multiplied by SQRT( overflow threshold )
(12) Same as (8), but multiplied by SQRT( underflow threshold )

(13) Symmetric matrix with random entries chosen from (-1,1).
(14) Same as (13), but multiplied by SQRT( overflow threshold )
(15) Same as (13), but multiplied by SQRT( underflow threshold )
(16) A band matrix with half bandwidth randomly chosen between
0 and N-1, with evenly spaced eigenvalues 1, ..., ULP
with random signs.
(17) Same as (16), but multiplied by SQRT( overflow threshold )
(18) Same as (16), but multiplied by SQRT( underflow threshold )```
```  NSIZES  INTEGER
The number of sizes of matrices to use.  If it is zero,
SDRVST does nothing.  It must be at least zero.
Not modified.

NN      INTEGER array, dimension (NSIZES)
An array containing the sizes to be used for the matrices.
Zero values will be skipped.  The values must be at least
zero.
Not modified.

NTYPES  INTEGER
The number of elements in DOTYPE.   If it is zero, SDRVST
does nothing.  It must be at least zero.  If it is MAXTYP+1
and NSIZES is 1, then an additional type, MAXTYP+1 is
defined, which is to use whatever matrix is in A.  This
is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
DOTYPE(MAXTYP+1) is .TRUE. .
Not modified.

DOTYPE  LOGICAL array, dimension (NTYPES)
If DOTYPE(j) is .TRUE., then for each size in NN a
matrix of that size and of type j will be generated.
If NTYPES is smaller than the maximum number of types
defined (PARAMETER MAXTYP), then types NTYPES+1 through
MAXTYP will not be generated.  If NTYPES is larger
than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
will be ignored.
Not modified.

ISEED   INTEGER array, dimension (4)
On entry ISEED specifies the seed of the random number
generator. The array elements should be between 0 and 4095;
if not they will be reduced mod 4096.  Also, ISEED(4) must
be odd.  The random number generator uses a linear
congruential sequence limited to small integers, and so
should produce machine independent random numbers. The
values of ISEED are changed on exit, and can be used in the
next call to SDRVST to continue the same random number
sequence.
Modified.

THRESH  REAL
A test will count as "failed" if the "error", computed as
described above, exceeds THRESH.  Note that the error
is scaled to be O(1), so THRESH should be a reasonably
small multiple of 1, e.g., 10 or 100.  In particular,
it should not depend on the precision (single vs. double)
or the size of the matrix.  It must be at least zero.
Not modified.

NOUNIT  INTEGER
The FORTRAN unit number for printing out error messages
(e.g., if a routine returns IINFO not equal to 0.)
Not modified.

A       REAL array, dimension (LDA , max(NN))
Used to hold the matrix whose eigenvalues are to be
computed.  On exit, A contains the last matrix actually
used.
Modified.

LDA     INTEGER
The leading dimension of A.  It must be at
least 1 and at least max( NN ).
Not modified.

D1      REAL array, dimension (max(NN))
The eigenvalues of A, as computed by SSTEQR simlutaneously
with Z.  On exit, the eigenvalues in D1 correspond with the
matrix in A.
Modified.

D2      REAL array, dimension (max(NN))
The eigenvalues of A, as computed by SSTEQR if Z is not
computed.  On exit, the eigenvalues in D2 correspond with
the matrix in A.
Modified.

D3      REAL array, dimension (max(NN))
The eigenvalues of A, as computed by SSTERF.  On exit, the
eigenvalues in D3 correspond with the matrix in A.
Modified.

D4      REAL array, dimension

EVEIGS  REAL array, dimension (max(NN))
The eigenvalues as computed by SSTEV('N', ... )
(I reserve the right to change this to the output of
whichever algorithm computes the most accurate eigenvalues).

WA1     REAL array, dimension

WA2     REAL array, dimension

WA3     REAL array, dimension

U       REAL array, dimension (LDU, max(NN))
The orthogonal matrix computed by SSYTRD + SORGTR.
Modified.

LDU     INTEGER
The leading dimension of U, Z, and V.  It must be at
least 1 and at least max( NN ).
Not modified.

V       REAL array, dimension (LDU, max(NN))
The Housholder vectors computed by SSYTRD in reducing A to
tridiagonal form.
Modified.

TAU     REAL array, dimension (max(NN))
The Householder factors computed by SSYTRD in reducing A
to tridiagonal form.
Modified.

Z       REAL array, dimension (LDU, max(NN))
The orthogonal matrix of eigenvectors computed by SSTEQR,
SPTEQR, and SSTEIN.
Modified.

WORK    REAL array, dimension (LWORK)
Workspace.
Modified.

LWORK   INTEGER
The number of entries in WORK.  This must be at least
1 + 4 * Nmax + 2 * Nmax * lg Nmax + 4 * Nmax**2
where Nmax = max( NN(j), 2 ) and lg = log base 2.
Not modified.

IWORK   INTEGER array,
dimension (6 + 6*Nmax + 5 * Nmax * lg Nmax )
where Nmax = max( NN(j), 2 ) and lg = log base 2.
Workspace.
Modified.

RESULT  REAL array, dimension (105)
The values computed by the tests described above.
The values are currently limited to 1/ulp, to avoid
overflow.
Modified.

INFO    INTEGER
If 0, then everything ran OK.
-1: NSIZES < 0
-2: Some NN(j) < 0
-3: NTYPES < 0
-5: THRESH < 0
-9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
-16: LDU < 1 or LDU < NMAX.
-21: LWORK too small.
If  SLATMR, SLATMS, SSYTRD, SORGTR, SSTEQR, SSTERF,
or SORMTR returns an error code, the
absolute value of it is returned.
Modified.

-----------------------------------------------------------------------

Some Local Variables and Parameters:
---- ----- --------- --- ----------
ZERO, ONE       Real 0 and 1.
MAXTYP          The number of types defined.
NTEST           The number of tests performed, or which can
be performed so far, for the current matrix.
NTESTT          The total number of tests performed so far.
NMAX            Largest value in NN.
NMATS           The number of matrices generated so far.
NERRS           The number of tests which have exceeded THRESH
so far (computed by SLAFTS).
COND, IMODE     Values to be passed to the matrix generators.
ANORM           Norm of A; passed to matrix generators.

OVFL, UNFL      Overflow and underflow thresholds.
ULP, ULPINV     Finest relative precision and its inverse.
RTOVFL, RTUNFL  Square roots of the previous 2 values.
The following four arrays decode JTYPE:
KTYPE(j)        The general type (1-10) for type "j".
KMODE(j)        The MODE value to be passed to the matrix
generator for type "j".
KMAGN(j)        The order of magnitude ( O(1),
O(overflow^(1/2) ), O(underflow^(1/2) )

The tests performed are:                 Routine tested
1= | A - U S U' | / ( |A| n ulp )         SSTEV('V', ... )
2= | I - U U' | / ( n ulp )               SSTEV('V', ... )
3= |D(with Z) - D(w/o Z)| / (|D| ulp)     SSTEV('N', ... )
4= | A - U S U' | / ( |A| n ulp )         SSTEVX('V','A', ... )
5= | I - U U' | / ( n ulp )               SSTEVX('V','A', ... )
6= |D(with Z) - EVEIGS| / (|D| ulp)       SSTEVX('N','A', ... )
7= | A - U S U' | / ( |A| n ulp )         SSTEVR('V','A', ... )
8= | I - U U' | / ( n ulp )               SSTEVR('V','A', ... )
9= |D(with Z) - EVEIGS| / (|D| ulp)       SSTEVR('N','A', ... )
10= | A - U S U' | / ( |A| n ulp )        SSTEVX('V','I', ... )
11= | I - U U' | / ( n ulp )              SSTEVX('V','I', ... )
12= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSTEVX('N','I', ... )
13= | A - U S U' | / ( |A| n ulp )        SSTEVX('V','V', ... )
14= | I - U U' | / ( n ulp )              SSTEVX('V','V', ... )
15= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSTEVX('N','V', ... )
16= | A - U S U' | / ( |A| n ulp )        SSTEVD('V', ... )
17= | I - U U' | / ( n ulp )              SSTEVD('V', ... )
18= |D(with Z) - EVEIGS| / (|D| ulp)      SSTEVD('N', ... )
19= | A - U S U' | / ( |A| n ulp )        SSTEVR('V','I', ... )
20= | I - U U' | / ( n ulp )              SSTEVR('V','I', ... )
21= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSTEVR('N','I', ... )
22= | A - U S U' | / ( |A| n ulp )        SSTEVR('V','V', ... )
23= | I - U U' | / ( n ulp )              SSTEVR('V','V', ... )
24= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSTEVR('N','V', ... )

25= | A - U S U' | / ( |A| n ulp )        SSYEV('L','V', ... )
26= | I - U U' | / ( n ulp )              SSYEV('L','V', ... )
27= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSYEV('L','N', ... )
28= | A - U S U' | / ( |A| n ulp )        SSYEVX('L','V','A', ... )
29= | I - U U' | / ( n ulp )              SSYEVX('L','V','A', ... )
30= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSYEVX('L','N','A', ... )
31= | A - U S U' | / ( |A| n ulp )        SSYEVX('L','V','I', ... )
32= | I - U U' | / ( n ulp )              SSYEVX('L','V','I', ... )
33= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSYEVX('L','N','I', ... )
34= | A - U S U' | / ( |A| n ulp )        SSYEVX('L','V','V', ... )
35= | I - U U' | / ( n ulp )              SSYEVX('L','V','V', ... )
36= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSYEVX('L','N','V', ... )
37= | A - U S U' | / ( |A| n ulp )        SSPEV('L','V', ... )
38= | I - U U' | / ( n ulp )              SSPEV('L','V', ... )
39= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSPEV('L','N', ... )
40= | A - U S U' | / ( |A| n ulp )        SSPEVX('L','V','A', ... )
41= | I - U U' | / ( n ulp )              SSPEVX('L','V','A', ... )
42= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSPEVX('L','N','A', ... )
43= | A - U S U' | / ( |A| n ulp )        SSPEVX('L','V','I', ... )
44= | I - U U' | / ( n ulp )              SSPEVX('L','V','I', ... )
45= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSPEVX('L','N','I', ... )
46= | A - U S U' | / ( |A| n ulp )        SSPEVX('L','V','V', ... )
47= | I - U U' | / ( n ulp )              SSPEVX('L','V','V', ... )
48= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSPEVX('L','N','V', ... )
49= | A - U S U' | / ( |A| n ulp )        SSBEV('L','V', ... )
50= | I - U U' | / ( n ulp )              SSBEV('L','V', ... )
51= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSBEV('L','N', ... )
52= | A - U S U' | / ( |A| n ulp )        SSBEVX('L','V','A', ... )
53= | I - U U' | / ( n ulp )              SSBEVX('L','V','A', ... )
54= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSBEVX('L','N','A', ... )
55= | A - U S U' | / ( |A| n ulp )        SSBEVX('L','V','I', ... )
56= | I - U U' | / ( n ulp )              SSBEVX('L','V','I', ... )
57= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSBEVX('L','N','I', ... )
58= | A - U S U' | / ( |A| n ulp )        SSBEVX('L','V','V', ... )
59= | I - U U' | / ( n ulp )              SSBEVX('L','V','V', ... )
60= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSBEVX('L','N','V', ... )
61= | A - U S U' | / ( |A| n ulp )        SSYEVD('L','V', ... )
62= | I - U U' | / ( n ulp )              SSYEVD('L','V', ... )
63= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSYEVD('L','N', ... )
64= | A - U S U' | / ( |A| n ulp )        SSPEVD('L','V', ... )
65= | I - U U' | / ( n ulp )              SSPEVD('L','V', ... )
66= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSPEVD('L','N', ... )
67= | A - U S U' | / ( |A| n ulp )        SSBEVD('L','V', ... )
68= | I - U U' | / ( n ulp )              SSBEVD('L','V', ... )
69= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSBEVD('L','N', ... )
70= | A - U S U' | / ( |A| n ulp )        SSYEVR('L','V','A', ... )
71= | I - U U' | / ( n ulp )              SSYEVR('L','V','A', ... )
72= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSYEVR('L','N','A', ... )
73= | A - U S U' | / ( |A| n ulp )        SSYEVR('L','V','I', ... )
74= | I - U U' | / ( n ulp )              SSYEVR('L','V','I', ... )
75= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSYEVR('L','N','I', ... )
76= | A - U S U' | / ( |A| n ulp )        SSYEVR('L','V','V', ... )
77= | I - U U' | / ( n ulp )              SSYEVR('L','V','V', ... )
78= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSYEVR('L','N','V', ... )

Tests 25 through 78 are repeated (as tests 79 through 132)
with UPLO='U'

79= | A - U S U' | / ( |A| n ulp )        SSPEVR('L','V','A', ... )
80= | I - U U' | / ( n ulp )              SSPEVR('L','V','A', ... )
81= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSPEVR('L','N','A', ... )
82= | A - U S U' | / ( |A| n ulp )        SSPEVR('L','V','I', ... )
83= | I - U U' | / ( n ulp )              SSPEVR('L','V','I', ... )
84= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSPEVR('L','N','I', ... )
85= | A - U S U' | / ( |A| n ulp )        SSPEVR('L','V','V', ... )
86= | I - U U' | / ( n ulp )              SSPEVR('L','V','V', ... )
87= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSPEVR('L','N','V', ... )
88= | A - U S U' | / ( |A| n ulp )        SSBEVR('L','V','A', ... )
89= | I - U U' | / ( n ulp )              SSBEVR('L','V','A', ... )
90= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSBEVR('L','N','A', ... )
91= | A - U S U' | / ( |A| n ulp )        SSBEVR('L','V','I', ... )
92= | I - U U' | / ( n ulp )              SSBEVR('L','V','I', ... )
93= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSBEVR('L','N','I', ... )
94= | A - U S U' | / ( |A| n ulp )        SSBEVR('L','V','V', ... )
95= | I - U U' | / ( n ulp )              SSBEVR('L','V','V', ... )
96= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSBEVR('L','N','V', ... )```
Date
November 2011

Definition at line 455 of file sdrvst.f.

455 *
456 * -- LAPACK test routine (version 3.4.0) --
457 * -- LAPACK is a software package provided by Univ. of Tennessee, --
458 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
459 * November 2011
460 *
461 * .. Scalar Arguments ..
462  INTEGER info, lda, ldu, liwork, lwork, nounit, nsizes,
463  \$ ntypes
464  REAL thresh
465 * ..
466 * .. Array Arguments ..
467  LOGICAL dotype( * )
468  INTEGER iseed( 4 ), iwork( * ), nn( * )
469  REAL a( lda, * ), d1( * ), d2( * ), d3( * ),
470  \$ d4( * ), eveigs( * ), result( * ), tau( * ),
471  \$ u( ldu, * ), v( ldu, * ), wa1( * ), wa2( * ),
472  \$ wa3( * ), work( * ), z( ldu, * )
473 * ..
474 *
475 * =====================================================================
476 *
477 * .. Parameters ..
478  REAL zero, one, two, ten
479  parameter ( zero = 0.0e0, one = 1.0e0, two = 2.0e0,
480  \$ ten = 10.0e0 )
481  REAL half
482  parameter ( half = 0.5e0 )
483  INTEGER maxtyp
484  parameter ( maxtyp = 18 )
485 * ..
486 * .. Local Scalars ..
488  CHARACTER uplo
489  INTEGER i, idiag, ihbw, iinfo, il, imode, indx, irow,
490  \$ itemp, itype, iu, iuplo, j, j1, j2, jcol,
491  \$ jsize, jtype, kd, lgn, liwedc, lwedc, m, m2,
492  \$ m3, mtypes, n, nerrs, nmats, nmax, ntest,
493  \$ ntestt
494  REAL abstol, aninv, anorm, cond, ovfl, rtovfl,
495  \$ rtunfl, temp1, temp2, temp3, ulp, ulpinv, unfl,
496  \$ vl, vu
497 * ..
498 * .. Local Arrays ..
499  INTEGER idumma( 1 ), ioldsd( 4 ), iseed2( 4 ),
500  \$ iseed3( 4 ), kmagn( maxtyp ), kmode( maxtyp ),
501  \$ ktype( maxtyp )
502 * ..
503 * .. External Functions ..
504  REAL slamch, slarnd, ssxt1
505  EXTERNAL slamch, slarnd, ssxt1
506 * ..
507 * .. External Subroutines ..
508  EXTERNAL alasvm, slabad, slacpy, slafts, slaset, slatmr,
512  \$ ssyt22, xerbla
513 * ..
514 * .. Scalars in Common ..
515  CHARACTER*32 srnamt
516 * ..
517 * .. Common blocks ..
518  COMMON / srnamc / srnamt
519 * ..
520 * .. Intrinsic Functions ..
521  INTRINSIC abs, int, log, max, min, REAL, sqrt
522 * ..
523 * .. Data statements ..
524  DATA ktype / 1, 2, 5*4, 5*5, 3*8, 3*9 /
525  DATA kmagn / 2*1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1,
526  \$ 2, 3, 1, 2, 3 /
527  DATA kmode / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
528  \$ 0, 0, 4, 4, 4 /
529 * ..
530 * .. Executable Statements ..
531 *
532 * Keep ftrnchek happy
533 *
534  vl = zero
535  vu = zero
536 *
537 * 1) Check for errors
538 *
539  ntestt = 0
540  info = 0
541 *
543  nmax = 1
544  DO 10 j = 1, nsizes
545  nmax = max( nmax, nn( j ) )
546  IF( nn( j ).LT.0 )
548  10 CONTINUE
549 *
550 * Check for errors
551 *
552  IF( nsizes.LT.0 ) THEN
553  info = -1
554  ELSE IF( badnn ) THEN
555  info = -2
556  ELSE IF( ntypes.LT.0 ) THEN
557  info = -3
558  ELSE IF( lda.LT.nmax ) THEN
559  info = -9
560  ELSE IF( ldu.LT.nmax ) THEN
561  info = -16
562  ELSE IF( 2*max( 2, nmax )**2.GT.lwork ) THEN
563  info = -21
564  END IF
565 *
566  IF( info.NE.0 ) THEN
567  CALL xerbla( 'SDRVST', -info )
568  RETURN
569  END IF
570 *
571 * Quick return if nothing to do
572 *
573  IF( nsizes.EQ.0 .OR. ntypes.EQ.0 )
574  \$ RETURN
575 *
576 * More Important constants
577 *
578  unfl = slamch( 'Safe minimum' )
579  ovfl = slamch( 'Overflow' )
580  CALL slabad( unfl, ovfl )
581  ulp = slamch( 'Epsilon' )*slamch( 'Base' )
582  ulpinv = one / ulp
583  rtunfl = sqrt( unfl )
584  rtovfl = sqrt( ovfl )
585 *
586 * Loop over sizes, types
587 *
588  DO 20 i = 1, 4
589  iseed2( i ) = iseed( i )
590  iseed3( i ) = iseed( i )
591  20 CONTINUE
592 *
593  nerrs = 0
594  nmats = 0
595 *
596 *
597  DO 1740 jsize = 1, nsizes
598  n = nn( jsize )
599  IF( n.GT.0 ) THEN
600  lgn = int( log( REAL( N ) ) / log( two ) )
601  IF( 2**lgn.LT.n )
602  \$ lgn = lgn + 1
603  IF( 2**lgn.LT.n )
604  \$ lgn = lgn + 1
605  lwedc = 1 + 4*n + 2*n*lgn + 4*n**2
606 c LIWEDC = 6 + 6*N + 5*N*LGN
607  liwedc = 3 + 5*n
608  ELSE
609  lwedc = 9
610 c LIWEDC = 12
611  liwedc = 8
612  END IF
613  aninv = one / REAL( MAX( 1, N ) )
614 *
615  IF( nsizes.NE.1 ) THEN
616  mtypes = min( maxtyp, ntypes )
617  ELSE
618  mtypes = min( maxtyp+1, ntypes )
619  END IF
620 *
621  DO 1730 jtype = 1, mtypes
622 *
623  IF( .NOT.dotype( jtype ) )
624  \$ GO TO 1730
625  nmats = nmats + 1
626  ntest = 0
627 *
628  DO 30 j = 1, 4
629  ioldsd( j ) = iseed( j )
630  30 CONTINUE
631 *
632 * 2) Compute "A"
633 *
634 * Control parameters:
635 *
636 * KMAGN KMODE KTYPE
637 * =1 O(1) clustered 1 zero
638 * =2 large clustered 2 identity
639 * =3 small exponential (none)
640 * =4 arithmetic diagonal, (w/ eigenvalues)
641 * =5 random log symmetric, w/ eigenvalues
642 * =6 random (none)
643 * =7 random diagonal
644 * =8 random symmetric
645 * =9 band symmetric, w/ eigenvalues
646 *
647  IF( mtypes.GT.maxtyp )
648  \$ GO TO 110
649 *
650  itype = ktype( jtype )
651  imode = kmode( jtype )
652 *
653 * Compute norm
654 *
655  GO TO ( 40, 50, 60 )kmagn( jtype )
656 *
657  40 CONTINUE
658  anorm = one
659  GO TO 70
660 *
661  50 CONTINUE
662  anorm = ( rtovfl*ulp )*aninv
663  GO TO 70
664 *
665  60 CONTINUE
666  anorm = rtunfl*n*ulpinv
667  GO TO 70
668 *
669  70 CONTINUE
670 *
671  CALL slaset( 'Full', lda, n, zero, zero, a, lda )
672  iinfo = 0
673  cond = ulpinv
674 *
675 * Special Matrices -- Identity & Jordan block
676 *
677 * Zero
678 *
679  IF( itype.EQ.1 ) THEN
680  iinfo = 0
681 *
682  ELSE IF( itype.EQ.2 ) THEN
683 *
684 * Identity
685 *
686  DO 80 jcol = 1, n
687  a( jcol, jcol ) = anorm
688  80 CONTINUE
689 *
690  ELSE IF( itype.EQ.4 ) THEN
691 *
692 * Diagonal Matrix, [Eigen]values Specified
693 *
694  CALL slatms( n, n, 'S', iseed, 'S', work, imode, cond,
695  \$ anorm, 0, 0, 'N', a, lda, work( n+1 ),
696  \$ iinfo )
697 *
698  ELSE IF( itype.EQ.5 ) THEN
699 *
700 * Symmetric, eigenvalues specified
701 *
702  CALL slatms( n, n, 'S', iseed, 'S', work, imode, cond,
703  \$ anorm, n, n, 'N', a, lda, work( n+1 ),
704  \$ iinfo )
705 *
706  ELSE IF( itype.EQ.7 ) THEN
707 *
708 * Diagonal, random eigenvalues
709 *
710  idumma( 1 ) = 1
711  CALL slatmr( n, n, 'S', iseed, 'S', work, 6, one, one,
712  \$ 'T', 'N', work( n+1 ), 1, one,
713  \$ work( 2*n+1 ), 1, one, 'N', idumma, 0, 0,
714  \$ zero, anorm, 'NO', a, lda, iwork, iinfo )
715 *
716  ELSE IF( itype.EQ.8 ) THEN
717 *
718 * Symmetric, random eigenvalues
719 *
720  idumma( 1 ) = 1
721  CALL slatmr( n, n, 'S', iseed, 'S', work, 6, one, one,
722  \$ 'T', 'N', work( n+1 ), 1, one,
723  \$ work( 2*n+1 ), 1, one, 'N', idumma, n, n,
724  \$ zero, anorm, 'NO', a, lda, iwork, iinfo )
725 *
726  ELSE IF( itype.EQ.9 ) THEN
727 *
728 * Symmetric banded, eigenvalues specified
729 *
730  ihbw = int( ( n-1 )*slarnd( 1, iseed3 ) )
731  CALL slatms( n, n, 'S', iseed, 'S', work, imode, cond,
732  \$ anorm, ihbw, ihbw, 'Z', u, ldu, work( n+1 ),
733  \$ iinfo )
734 *
735 * Store as dense matrix for most routines.
736 *
737  CALL slaset( 'Full', lda, n, zero, zero, a, lda )
738  DO 100 idiag = -ihbw, ihbw
739  irow = ihbw - idiag + 1
740  j1 = max( 1, idiag+1 )
741  j2 = min( n, n+idiag )
742  DO 90 j = j1, j2
743  i = j - idiag
744  a( i, j ) = u( irow, j )
745  90 CONTINUE
746  100 CONTINUE
747  ELSE
748  iinfo = 1
749  END IF
750 *
751  IF( iinfo.NE.0 ) THEN
752  WRITE( nounit, fmt = 9999 )'Generator', iinfo, n, jtype,
753  \$ ioldsd
754  info = abs( iinfo )
755  RETURN
756  END IF
757 *
758  110 CONTINUE
759 *
760  abstol = unfl + unfl
761  IF( n.LE.1 ) THEN
762  il = 1
763  iu = n
764  ELSE
765  il = 1 + int( ( n-1 )*slarnd( 1, iseed2 ) )
766  iu = 1 + int( ( n-1 )*slarnd( 1, iseed2 ) )
767  IF( il.GT.iu ) THEN
768  itemp = il
769  il = iu
770  iu = itemp
771  END IF
772  END IF
773 *
774 * 3) If matrix is tridiagonal, call SSTEV and SSTEVX.
775 *
776  IF( jtype.LE.7 ) THEN
777  ntest = 1
778  DO 120 i = 1, n
779  d1( i ) = REAL( A( I, I ) )
780  120 CONTINUE
781  DO 130 i = 1, n - 1
782  d2( i ) = REAL( A( I+1, I ) )
783  130 CONTINUE
784  srnamt = 'SSTEV'
785  CALL sstev( 'V', n, d1, d2, z, ldu, work, iinfo )
786  IF( iinfo.NE.0 ) THEN
787  WRITE( nounit, fmt = 9999 )'SSTEV(V)', iinfo, n,
788  \$ jtype, ioldsd
789  info = abs( iinfo )
790  IF( iinfo.LT.0 ) THEN
791  RETURN
792  ELSE
793  result( 1 ) = ulpinv
794  result( 2 ) = ulpinv
795  result( 3 ) = ulpinv
796  GO TO 180
797  END IF
798  END IF
799 *
800 * Do tests 1 and 2.
801 *
802  DO 140 i = 1, n
803  d3( i ) = REAL( A( I, I ) )
804  140 CONTINUE
805  DO 150 i = 1, n - 1
806  d4( i ) = REAL( A( I+1, I ) )
807  150 CONTINUE
808  CALL sstt21( n, 0, d3, d4, d1, d2, z, ldu, work,
809  \$ result( 1 ) )
810 *
811  ntest = 3
812  DO 160 i = 1, n - 1
813  d4( i ) = REAL( A( I+1, I ) )
814  160 CONTINUE
815  srnamt = 'SSTEV'
816  CALL sstev( 'N', n, d3, d4, z, ldu, work, iinfo )
817  IF( iinfo.NE.0 ) THEN
818  WRITE( nounit, fmt = 9999 )'SSTEV(N)', iinfo, n,
819  \$ jtype, ioldsd
820  info = abs( iinfo )
821  IF( iinfo.LT.0 ) THEN
822  RETURN
823  ELSE
824  result( 3 ) = ulpinv
825  GO TO 180
826  END IF
827  END IF
828 *
829 * Do test 3.
830 *
831  temp1 = zero
832  temp2 = zero
833  DO 170 j = 1, n
834  temp1 = max( temp1, abs( d1( j ) ), abs( d3( j ) ) )
835  temp2 = max( temp2, abs( d1( j )-d3( j ) ) )
836  170 CONTINUE
837  result( 3 ) = temp2 / max( unfl,
838  \$ ulp*max( temp1, temp2 ) )
839 *
840  180 CONTINUE
841 *
842  ntest = 4
843  DO 190 i = 1, n
844  eveigs( i ) = d3( i )
845  d1( i ) = REAL( A( I, I ) )
846  190 CONTINUE
847  DO 200 i = 1, n - 1
848  d2( i ) = REAL( A( I+1, I ) )
849  200 CONTINUE
850  srnamt = 'SSTEVX'
851  CALL sstevx( 'V', 'A', n, d1, d2, vl, vu, il, iu, abstol,
852  \$ m, wa1, z, ldu, work, iwork, iwork( 5*n+1 ),
853  \$ iinfo )
854  IF( iinfo.NE.0 ) THEN
855  WRITE( nounit, fmt = 9999 )'SSTEVX(V,A)', iinfo, n,
856  \$ jtype, ioldsd
857  info = abs( iinfo )
858  IF( iinfo.LT.0 ) THEN
859  RETURN
860  ELSE
861  result( 4 ) = ulpinv
862  result( 5 ) = ulpinv
863  result( 6 ) = ulpinv
864  GO TO 250
865  END IF
866  END IF
867  IF( n.GT.0 ) THEN
868  temp3 = max( abs( wa1( 1 ) ), abs( wa1( n ) ) )
869  ELSE
870  temp3 = zero
871  END IF
872 *
873 * Do tests 4 and 5.
874 *
875  DO 210 i = 1, n
876  d3( i ) = REAL( A( I, I ) )
877  210 CONTINUE
878  DO 220 i = 1, n - 1
879  d4( i ) = REAL( A( I+1, I ) )
880  220 CONTINUE
881  CALL sstt21( n, 0, d3, d4, wa1, d2, z, ldu, work,
882  \$ result( 4 ) )
883 *
884  ntest = 6
885  DO 230 i = 1, n - 1
886  d4( i ) = REAL( A( I+1, I ) )
887  230 CONTINUE
888  srnamt = 'SSTEVX'
889  CALL sstevx( 'N', 'A', n, d3, d4, vl, vu, il, iu, abstol,
890  \$ m2, wa2, z, ldu, work, iwork,
891  \$ iwork( 5*n+1 ), iinfo )
892  IF( iinfo.NE.0 ) THEN
893  WRITE( nounit, fmt = 9999 )'SSTEVX(N,A)', iinfo, n,
894  \$ jtype, ioldsd
895  info = abs( iinfo )
896  IF( iinfo.LT.0 ) THEN
897  RETURN
898  ELSE
899  result( 6 ) = ulpinv
900  GO TO 250
901  END IF
902  END IF
903 *
904 * Do test 6.
905 *
906  temp1 = zero
907  temp2 = zero
908  DO 240 j = 1, n
909  temp1 = max( temp1, abs( wa2( j ) ),
910  \$ abs( eveigs( j ) ) )
911  temp2 = max( temp2, abs( wa2( j )-eveigs( j ) ) )
912  240 CONTINUE
913  result( 6 ) = temp2 / max( unfl,
914  \$ ulp*max( temp1, temp2 ) )
915 *
916  250 CONTINUE
917 *
918  ntest = 7
919  DO 260 i = 1, n
920  d1( i ) = REAL( A( I, I ) )
921  260 CONTINUE
922  DO 270 i = 1, n - 1
923  d2( i ) = REAL( A( I+1, I ) )
924  270 CONTINUE
925  srnamt = 'SSTEVR'
926  CALL sstevr( 'V', 'A', n, d1, d2, vl, vu, il, iu, abstol,
927  \$ m, wa1, z, ldu, iwork, work, lwork,
928  \$ iwork(2*n+1), liwork-2*n, iinfo )
929  IF( iinfo.NE.0 ) THEN
930  WRITE( nounit, fmt = 9999 )'SSTEVR(V,A)', iinfo, n,
931  \$ jtype, ioldsd
932  info = abs( iinfo )
933  IF( iinfo.LT.0 ) THEN
934  RETURN
935  ELSE
936  result( 7 ) = ulpinv
937  result( 8 ) = ulpinv
938  GO TO 320
939  END IF
940  END IF
941  IF( n.GT.0 ) THEN
942  temp3 = max( abs( wa1( 1 ) ), abs( wa1( n ) ) )
943  ELSE
944  temp3 = zero
945  END IF
946 *
947 * Do tests 7 and 8.
948 *
949  DO 280 i = 1, n
950  d3( i ) = REAL( A( I, I ) )
951  280 CONTINUE
952  DO 290 i = 1, n - 1
953  d4( i ) = REAL( A( I+1, I ) )
954  290 CONTINUE
955  CALL sstt21( n, 0, d3, d4, wa1, d2, z, ldu, work,
956  \$ result( 7 ) )
957 *
958  ntest = 9
959  DO 300 i = 1, n - 1
960  d4( i ) = REAL( A( I+1, I ) )
961  300 CONTINUE
962  srnamt = 'SSTEVR'
963  CALL sstevr( 'N', 'A', n, d3, d4, vl, vu, il, iu, abstol,
964  \$ m2, wa2, z, ldu, iwork, work, lwork,
965  \$ iwork(2*n+1), liwork-2*n, iinfo )
966  IF( iinfo.NE.0 ) THEN
967  WRITE( nounit, fmt = 9999 )'SSTEVR(N,A)', iinfo, n,
968  \$ jtype, ioldsd
969  info = abs( iinfo )
970  IF( iinfo.LT.0 ) THEN
971  RETURN
972  ELSE
973  result( 9 ) = ulpinv
974  GO TO 320
975  END IF
976  END IF
977 *
978 * Do test 9.
979 *
980  temp1 = zero
981  temp2 = zero
982  DO 310 j = 1, n
983  temp1 = max( temp1, abs( wa2( j ) ),
984  \$ abs( eveigs( j ) ) )
985  temp2 = max( temp2, abs( wa2( j )-eveigs( j ) ) )
986  310 CONTINUE
987  result( 9 ) = temp2 / max( unfl,
988  \$ ulp*max( temp1, temp2 ) )
989 *
990  320 CONTINUE
991 *
992 *
993  ntest = 10
994  DO 330 i = 1, n
995  d1( i ) = REAL( A( I, I ) )
996  330 CONTINUE
997  DO 340 i = 1, n - 1
998  d2( i ) = REAL( A( I+1, I ) )
999  340 CONTINUE
1000  srnamt = 'SSTEVX'
1001  CALL sstevx( 'V', 'I', n, d1, d2, vl, vu, il, iu, abstol,
1002  \$ m2, wa2, z, ldu, work, iwork,
1003  \$ iwork( 5*n+1 ), iinfo )
1004  IF( iinfo.NE.0 ) THEN
1005  WRITE( nounit, fmt = 9999 )'SSTEVX(V,I)', iinfo, n,
1006  \$ jtype, ioldsd
1007  info = abs( iinfo )
1008  IF( iinfo.LT.0 ) THEN
1009  RETURN
1010  ELSE
1011  result( 10 ) = ulpinv
1012  result( 11 ) = ulpinv
1013  result( 12 ) = ulpinv
1014  GO TO 380
1015  END IF
1016  END IF
1017 *
1018 * Do tests 10 and 11.
1019 *
1020  DO 350 i = 1, n
1021  d3( i ) = REAL( A( I, I ) )
1022  350 CONTINUE
1023  DO 360 i = 1, n - 1
1024  d4( i ) = REAL( A( I+1, I ) )
1025  360 CONTINUE
1026  CALL sstt22( n, m2, 0, d3, d4, wa2, d2, z, ldu, work,
1027  \$ max( 1, m2 ), result( 10 ) )
1028 *
1029 *
1030  ntest = 12
1031  DO 370 i = 1, n - 1
1032  d4( i ) = REAL( A( I+1, I ) )
1033  370 CONTINUE
1034  srnamt = 'SSTEVX'
1035  CALL sstevx( 'N', 'I', n, d3, d4, vl, vu, il, iu, abstol,
1036  \$ m3, wa3, z, ldu, work, iwork,
1037  \$ iwork( 5*n+1 ), iinfo )
1038  IF( iinfo.NE.0 ) THEN
1039  WRITE( nounit, fmt = 9999 )'SSTEVX(N,I)', iinfo, n,
1040  \$ jtype, ioldsd
1041  info = abs( iinfo )
1042  IF( iinfo.LT.0 ) THEN
1043  RETURN
1044  ELSE
1045  result( 12 ) = ulpinv
1046  GO TO 380
1047  END IF
1048  END IF
1049 *
1050 * Do test 12.
1051 *
1052  temp1 = ssxt1( 1, wa2, m2, wa3, m3, abstol, ulp, unfl )
1053  temp2 = ssxt1( 1, wa3, m3, wa2, m2, abstol, ulp, unfl )
1054  result( 12 ) = ( temp1+temp2 ) / max( unfl, ulp*temp3 )
1055 *
1056  380 CONTINUE
1057 *
1058  ntest = 12
1059  IF( n.GT.0 ) THEN
1060  IF( il.NE.1 ) THEN
1061  vl = wa1( il ) - max( half*
1062  \$ ( wa1( il )-wa1( il-1 ) ), ten*ulp*temp3,
1063  \$ ten*rtunfl )
1064  ELSE
1065  vl = wa1( 1 ) - max( half*( wa1( n )-wa1( 1 ) ),
1066  \$ ten*ulp*temp3, ten*rtunfl )
1067  END IF
1068  IF( iu.NE.n ) THEN
1069  vu = wa1( iu ) + max( half*
1070  \$ ( wa1( iu+1 )-wa1( iu ) ), ten*ulp*temp3,
1071  \$ ten*rtunfl )
1072  ELSE
1073  vu = wa1( n ) + max( half*( wa1( n )-wa1( 1 ) ),
1074  \$ ten*ulp*temp3, ten*rtunfl )
1075  END IF
1076  ELSE
1077  vl = zero
1078  vu = one
1079  END IF
1080 *
1081  DO 390 i = 1, n
1082  d1( i ) = REAL( A( I, I ) )
1083  390 CONTINUE
1084  DO 400 i = 1, n - 1
1085  d2( i ) = REAL( A( I+1, I ) )
1086  400 CONTINUE
1087  srnamt = 'SSTEVX'
1088  CALL sstevx( 'V', 'V', n, d1, d2, vl, vu, il, iu, abstol,
1089  \$ m2, wa2, z, ldu, work, iwork,
1090  \$ iwork( 5*n+1 ), iinfo )
1091  IF( iinfo.NE.0 ) THEN
1092  WRITE( nounit, fmt = 9999 )'SSTEVX(V,V)', iinfo, n,
1093  \$ jtype, ioldsd
1094  info = abs( iinfo )
1095  IF( iinfo.LT.0 ) THEN
1096  RETURN
1097  ELSE
1098  result( 13 ) = ulpinv
1099  result( 14 ) = ulpinv
1100  result( 15 ) = ulpinv
1101  GO TO 440
1102  END IF
1103  END IF
1104 *
1105  IF( m2.EQ.0 .AND. n.GT.0 ) THEN
1106  result( 13 ) = ulpinv
1107  result( 14 ) = ulpinv
1108  result( 15 ) = ulpinv
1109  GO TO 440
1110  END IF
1111 *
1112 * Do tests 13 and 14.
1113 *
1114  DO 410 i = 1, n
1115  d3( i ) = REAL( A( I, I ) )
1116  410 CONTINUE
1117  DO 420 i = 1, n - 1
1118  d4( i ) = REAL( A( I+1, I ) )
1119  420 CONTINUE
1120  CALL sstt22( n, m2, 0, d3, d4, wa2, d2, z, ldu, work,
1121  \$ max( 1, m2 ), result( 13 ) )
1122 *
1123  ntest = 15
1124  DO 430 i = 1, n - 1
1125  d4( i ) = REAL( A( I+1, I ) )
1126  430 CONTINUE
1127  srnamt = 'SSTEVX'
1128  CALL sstevx( 'N', 'V', n, d3, d4, vl, vu, il, iu, abstol,
1129  \$ m3, wa3, z, ldu, work, iwork,
1130  \$ iwork( 5*n+1 ), iinfo )
1131  IF( iinfo.NE.0 ) THEN
1132  WRITE( nounit, fmt = 9999 )'SSTEVX(N,V)', iinfo, n,
1133  \$ jtype, ioldsd
1134  info = abs( iinfo )
1135  IF( iinfo.LT.0 ) THEN
1136  RETURN
1137  ELSE
1138  result( 15 ) = ulpinv
1139  GO TO 440
1140  END IF
1141  END IF
1142 *
1143 * Do test 15.
1144 *
1145  temp1 = ssxt1( 1, wa2, m2, wa3, m3, abstol, ulp, unfl )
1146  temp2 = ssxt1( 1, wa3, m3, wa2, m2, abstol, ulp, unfl )
1147  result( 15 ) = ( temp1+temp2 ) / max( unfl, temp3*ulp )
1148 *
1149  440 CONTINUE
1150 *
1151  ntest = 16
1152  DO 450 i = 1, n
1153  d1( i ) = REAL( A( I, I ) )
1154  450 CONTINUE
1155  DO 460 i = 1, n - 1
1156  d2( i ) = REAL( A( I+1, I ) )
1157  460 CONTINUE
1158  srnamt = 'SSTEVD'
1159  CALL sstevd( 'V', n, d1, d2, z, ldu, work, lwedc, iwork,
1160  \$ liwedc, iinfo )
1161  IF( iinfo.NE.0 ) THEN
1162  WRITE( nounit, fmt = 9999 )'SSTEVD(V)', iinfo, n,
1163  \$ jtype, ioldsd
1164  info = abs( iinfo )
1165  IF( iinfo.LT.0 ) THEN
1166  RETURN
1167  ELSE
1168  result( 16 ) = ulpinv
1169  result( 17 ) = ulpinv
1170  result( 18 ) = ulpinv
1171  GO TO 510
1172  END IF
1173  END IF
1174 *
1175 * Do tests 16 and 17.
1176 *
1177  DO 470 i = 1, n
1178  d3( i ) = REAL( A( I, I ) )
1179  470 CONTINUE
1180  DO 480 i = 1, n - 1
1181  d4( i ) = REAL( A( I+1, I ) )
1182  480 CONTINUE
1183  CALL sstt21( n, 0, d3, d4, d1, d2, z, ldu, work,
1184  \$ result( 16 ) )
1185 *
1186  ntest = 18
1187  DO 490 i = 1, n - 1
1188  d4( i ) = REAL( A( I+1, I ) )
1189  490 CONTINUE
1190  srnamt = 'SSTEVD'
1191  CALL sstevd( 'N', n, d3, d4, z, ldu, work, lwedc, iwork,
1192  \$ liwedc, iinfo )
1193  IF( iinfo.NE.0 ) THEN
1194  WRITE( nounit, fmt = 9999 )'SSTEVD(N)', iinfo, n,
1195  \$ jtype, ioldsd
1196  info = abs( iinfo )
1197  IF( iinfo.LT.0 ) THEN
1198  RETURN
1199  ELSE
1200  result( 18 ) = ulpinv
1201  GO TO 510
1202  END IF
1203  END IF
1204 *
1205 * Do test 18.
1206 *
1207  temp1 = zero
1208  temp2 = zero
1209  DO 500 j = 1, n
1210  temp1 = max( temp1, abs( eveigs( j ) ),
1211  \$ abs( d3( j ) ) )
1212  temp2 = max( temp2, abs( eveigs( j )-d3( j ) ) )
1213  500 CONTINUE
1214  result( 18 ) = temp2 / max( unfl,
1215  \$ ulp*max( temp1, temp2 ) )
1216 *
1217  510 CONTINUE
1218 *
1219  ntest = 19
1220  DO 520 i = 1, n
1221  d1( i ) = REAL( A( I, I ) )
1222  520 CONTINUE
1223  DO 530 i = 1, n - 1
1224  d2( i ) = REAL( A( I+1, I ) )
1225  530 CONTINUE
1226  srnamt = 'SSTEVR'
1227  CALL sstevr( 'V', 'I', n, d1, d2, vl, vu, il, iu, abstol,
1228  \$ m2, wa2, z, ldu, iwork, work, lwork,
1229  \$ iwork(2*n+1), liwork-2*n, iinfo )
1230  IF( iinfo.NE.0 ) THEN
1231  WRITE( nounit, fmt = 9999 )'SSTEVR(V,I)', iinfo, n,
1232  \$ jtype, ioldsd
1233  info = abs( iinfo )
1234  IF( iinfo.LT.0 ) THEN
1235  RETURN
1236  ELSE
1237  result( 19 ) = ulpinv
1238  result( 20 ) = ulpinv
1239  result( 21 ) = ulpinv
1240  GO TO 570
1241  END IF
1242  END IF
1243 *
1244 * DO tests 19 and 20.
1245 *
1246  DO 540 i = 1, n
1247  d3( i ) = REAL( A( I, I ) )
1248  540 CONTINUE
1249  DO 550 i = 1, n - 1
1250  d4( i ) = REAL( A( I+1, I ) )
1251  550 CONTINUE
1252  CALL sstt22( n, m2, 0, d3, d4, wa2, d2, z, ldu, work,
1253  \$ max( 1, m2 ), result( 19 ) )
1254 *
1255 *
1256  ntest = 21
1257  DO 560 i = 1, n - 1
1258  d4( i ) = REAL( A( I+1, I ) )
1259  560 CONTINUE
1260  srnamt = 'SSTEVR'
1261  CALL sstevr( 'N', 'I', n, d3, d4, vl, vu, il, iu, abstol,
1262  \$ m3, wa3, z, ldu, iwork, work, lwork,
1263  \$ iwork(2*n+1), liwork-2*n, iinfo )
1264  IF( iinfo.NE.0 ) THEN
1265  WRITE( nounit, fmt = 9999 )'SSTEVR(N,I)', iinfo, n,
1266  \$ jtype, ioldsd
1267  info = abs( iinfo )
1268  IF( iinfo.LT.0 ) THEN
1269  RETURN
1270  ELSE
1271  result( 21 ) = ulpinv
1272  GO TO 570
1273  END IF
1274  END IF
1275 *
1276 * Do test 21.
1277 *
1278  temp1 = ssxt1( 1, wa2, m2, wa3, m3, abstol, ulp, unfl )
1279  temp2 = ssxt1( 1, wa3, m3, wa2, m2, abstol, ulp, unfl )
1280  result( 21 ) = ( temp1+temp2 ) / max( unfl, ulp*temp3 )
1281 *
1282  570 CONTINUE
1283 *
1284  ntest = 21
1285  IF( n.GT.0 ) THEN
1286  IF( il.NE.1 ) THEN
1287  vl = wa1( il ) - max( half*
1288  \$ ( wa1( il )-wa1( il-1 ) ), ten*ulp*temp3,
1289  \$ ten*rtunfl )
1290  ELSE
1291  vl = wa1( 1 ) - max( half*( wa1( n )-wa1( 1 ) ),
1292  \$ ten*ulp*temp3, ten*rtunfl )
1293  END IF
1294  IF( iu.NE.n ) THEN
1295  vu = wa1( iu ) + max( half*
1296  \$ ( wa1( iu+1 )-wa1( iu ) ), ten*ulp*temp3,
1297  \$ ten*rtunfl )
1298  ELSE
1299  vu = wa1( n ) + max( half*( wa1( n )-wa1( 1 ) ),
1300  \$ ten*ulp*temp3, ten*rtunfl )
1301  END IF
1302  ELSE
1303  vl = zero
1304  vu = one
1305  END IF
1306 *
1307  DO 580 i = 1, n
1308  d1( i ) = REAL( A( I, I ) )
1309  580 CONTINUE
1310  DO 590 i = 1, n - 1
1311  d2( i ) = REAL( A( I+1, I ) )
1312  590 CONTINUE
1313  srnamt = 'SSTEVR'
1314  CALL sstevr( 'V', 'V', n, d1, d2, vl, vu, il, iu, abstol,
1315  \$ m2, wa2, z, ldu, iwork, work, lwork,
1316  \$ iwork(2*n+1), liwork-2*n, iinfo )
1317  IF( iinfo.NE.0 ) THEN
1318  WRITE( nounit, fmt = 9999 )'SSTEVR(V,V)', iinfo, n,
1319  \$ jtype, ioldsd
1320  info = abs( iinfo )
1321  IF( iinfo.LT.0 ) THEN
1322  RETURN
1323  ELSE
1324  result( 22 ) = ulpinv
1325  result( 23 ) = ulpinv
1326  result( 24 ) = ulpinv
1327  GO TO 630
1328  END IF
1329  END IF
1330 *
1331  IF( m2.EQ.0 .AND. n.GT.0 ) THEN
1332  result( 22 ) = ulpinv
1333  result( 23 ) = ulpinv
1334  result( 24 ) = ulpinv
1335  GO TO 630
1336  END IF
1337 *
1338 * Do tests 22 and 23.
1339 *
1340  DO 600 i = 1, n
1341  d3( i ) = REAL( A( I, I ) )
1342  600 CONTINUE
1343  DO 610 i = 1, n - 1
1344  d4( i ) = REAL( A( I+1, I ) )
1345  610 CONTINUE
1346  CALL sstt22( n, m2, 0, d3, d4, wa2, d2, z, ldu, work,
1347  \$ max( 1, m2 ), result( 22 ) )
1348 *
1349  ntest = 24
1350  DO 620 i = 1, n - 1
1351  d4( i ) = REAL( A( I+1, I ) )
1352  620 CONTINUE
1353  srnamt = 'SSTEVR'
1354  CALL sstevr( 'N', 'V', n, d3, d4, vl, vu, il, iu, abstol,
1355  \$ m3, wa3, z, ldu, iwork, work, lwork,
1356  \$ iwork(2*n+1), liwork-2*n, iinfo )
1357  IF( iinfo.NE.0 ) THEN
1358  WRITE( nounit, fmt = 9999 )'SSTEVR(N,V)', iinfo, n,
1359  \$ jtype, ioldsd
1360  info = abs( iinfo )
1361  IF( iinfo.LT.0 ) THEN
1362  RETURN
1363  ELSE
1364  result( 24 ) = ulpinv
1365  GO TO 630
1366  END IF
1367  END IF
1368 *
1369 * Do test 24.
1370 *
1371  temp1 = ssxt1( 1, wa2, m2, wa3, m3, abstol, ulp, unfl )
1372  temp2 = ssxt1( 1, wa3, m3, wa2, m2, abstol, ulp, unfl )
1373  result( 24 ) = ( temp1+temp2 ) / max( unfl, temp3*ulp )
1374 *
1375  630 CONTINUE
1376 *
1377 *
1378 *
1379  ELSE
1380 *
1381  DO 640 i = 1, 24
1382  result( i ) = zero
1383  640 CONTINUE
1384  ntest = 24
1385  END IF
1386 *
1387 * Perform remaining tests storing upper or lower triangular
1388 * part of matrix.
1389 *
1390  DO 1720 iuplo = 0, 1
1391  IF( iuplo.EQ.0 ) THEN
1392  uplo = 'L'
1393  ELSE
1394  uplo = 'U'
1395  END IF
1396 *
1397 * 4) Call SSYEV and SSYEVX.
1398 *
1399  CALL slacpy( ' ', n, n, a, lda, v, ldu )
1400 *
1401  ntest = ntest + 1
1402  srnamt = 'SSYEV'
1403  CALL ssyev( 'V', uplo, n, a, ldu, d1, work, lwork,
1404  \$ iinfo )
1405  IF( iinfo.NE.0 ) THEN
1406  WRITE( nounit, fmt = 9999 )'SSYEV(V,' // uplo // ')',
1407  \$ iinfo, n, jtype, ioldsd
1408  info = abs( iinfo )
1409  IF( iinfo.LT.0 ) THEN
1410  RETURN
1411  ELSE
1412  result( ntest ) = ulpinv
1413  result( ntest+1 ) = ulpinv
1414  result( ntest+2 ) = ulpinv
1415  GO TO 660
1416  END IF
1417  END IF
1418 *
1419 * Do tests 25 and 26 (or +54)
1420 *
1421  CALL ssyt21( 1, uplo, n, 0, v, ldu, d1, d2, a, ldu, z,
1422  \$ ldu, tau, work, result( ntest ) )
1423 *
1424  CALL slacpy( ' ', n, n, v, ldu, a, lda )
1425 *
1426  ntest = ntest + 2
1427  srnamt = 'SSYEV'
1428  CALL ssyev( 'N', uplo, n, a, ldu, d3, work, lwork,
1429  \$ iinfo )
1430  IF( iinfo.NE.0 ) THEN
1431  WRITE( nounit, fmt = 9999 )'SSYEV(N,' // uplo // ')',
1432  \$ iinfo, n, jtype, ioldsd
1433  info = abs( iinfo )
1434  IF( iinfo.LT.0 ) THEN
1435  RETURN
1436  ELSE
1437  result( ntest ) = ulpinv
1438  GO TO 660
1439  END IF
1440  END IF
1441 *
1442 * Do test 27 (or +54)
1443 *
1444  temp1 = zero
1445  temp2 = zero
1446  DO 650 j = 1, n
1447  temp1 = max( temp1, abs( d1( j ) ), abs( d3( j ) ) )
1448  temp2 = max( temp2, abs( d1( j )-d3( j ) ) )
1449  650 CONTINUE
1450  result( ntest ) = temp2 / max( unfl,
1451  \$ ulp*max( temp1, temp2 ) )
1452 *
1453  660 CONTINUE
1454  CALL slacpy( ' ', n, n, v, ldu, a, lda )
1455 *
1456  ntest = ntest + 1
1457 *
1458  IF( n.GT.0 ) THEN
1459  temp3 = max( abs( d1( 1 ) ), abs( d1( n ) ) )
1460  IF( il.NE.1 ) THEN
1461  vl = d1( il ) - max( half*( d1( il )-d1( il-1 ) ),
1462  \$ ten*ulp*temp3, ten*rtunfl )
1463  ELSE IF( n.GT.0 ) THEN
1464  vl = d1( 1 ) - max( half*( d1( n )-d1( 1 ) ),
1465  \$ ten*ulp*temp3, ten*rtunfl )
1466  END IF
1467  IF( iu.NE.n ) THEN
1468  vu = d1( iu ) + max( half*( d1( iu+1 )-d1( iu ) ),
1469  \$ ten*ulp*temp3, ten*rtunfl )
1470  ELSE IF( n.GT.0 ) THEN
1471  vu = d1( n ) + max( half*( d1( n )-d1( 1 ) ),
1472  \$ ten*ulp*temp3, ten*rtunfl )
1473  END IF
1474  ELSE
1475  temp3 = zero
1476  vl = zero
1477  vu = one
1478  END IF
1479 *
1480  srnamt = 'SSYEVX'
1481  CALL ssyevx( 'V', 'A', uplo, n, a, ldu, vl, vu, il, iu,
1482  \$ abstol, m, wa1, z, ldu, work, lwork, iwork,
1483  \$ iwork( 5*n+1 ), iinfo )
1484  IF( iinfo.NE.0 ) THEN
1485  WRITE( nounit, fmt = 9999 )'SSYEVX(V,A,' // uplo //
1486  \$ ')', iinfo, n, jtype, ioldsd
1487  info = abs( iinfo )
1488  IF( iinfo.LT.0 ) THEN
1489  RETURN
1490  ELSE
1491  result( ntest ) = ulpinv
1492  result( ntest+1 ) = ulpinv
1493  result( ntest+2 ) = ulpinv
1494  GO TO 680
1495  END IF
1496  END IF
1497 *
1498 * Do tests 28 and 29 (or +54)
1499 *
1500  CALL slacpy( ' ', n, n, v, ldu, a, lda )
1501 *
1502  CALL ssyt21( 1, uplo, n, 0, a, ldu, d1, d2, z, ldu, v,
1503  \$ ldu, tau, work, result( ntest ) )
1504 *
1505  ntest = ntest + 2
1506  srnamt = 'SSYEVX'
1507  CALL ssyevx( 'N', 'A', uplo, n, a, ldu, vl, vu, il, iu,
1508  \$ abstol, m2, wa2, z, ldu, work, lwork, iwork,
1509  \$ iwork( 5*n+1 ), iinfo )
1510  IF( iinfo.NE.0 ) THEN
1511  WRITE( nounit, fmt = 9999 )'SSYEVX(N,A,' // uplo //
1512  \$ ')', iinfo, n, jtype, ioldsd
1513  info = abs( iinfo )
1514  IF( iinfo.LT.0 ) THEN
1515  RETURN
1516  ELSE
1517  result( ntest ) = ulpinv
1518  GO TO 680
1519  END IF
1520  END IF
1521 *
1522 * Do test 30 (or +54)
1523 *
1524  temp1 = zero
1525  temp2 = zero
1526  DO 670 j = 1, n
1527  temp1 = max( temp1, abs( wa1( j ) ), abs( wa2( j ) ) )
1528  temp2 = max( temp2, abs( wa1( j )-wa2( j ) ) )
1529  670 CONTINUE
1530  result( ntest ) = temp2 / max( unfl,
1531  \$ ulp*max( temp1, temp2 ) )
1532 *
1533  680 CONTINUE
1534 *
1535  ntest = ntest + 1
1536  CALL slacpy( ' ', n, n, v, ldu, a, lda )
1537  srnamt = 'SSYEVX'
1538  CALL ssyevx( 'V', 'I', uplo, n, a, ldu, vl, vu, il, iu,
1539  \$ abstol, m2, wa2, z, ldu, work, lwork, iwork,
1540  \$ iwork( 5*n+1 ), iinfo )
1541  IF( iinfo.NE.0 ) THEN
1542  WRITE( nounit, fmt = 9999 )'SSYEVX(V,I,' // uplo //
1543  \$ ')', iinfo, n, jtype, ioldsd
1544  info = abs( iinfo )
1545  IF( iinfo.LT.0 ) THEN
1546  RETURN
1547  ELSE
1548  result( ntest ) = ulpinv
1549  result( ntest+1 ) = ulpinv
1550  result( ntest+2 ) = ulpinv
1551  GO TO 690
1552  END IF
1553  END IF
1554 *
1555 * Do tests 31 and 32 (or +54)
1556 *
1557  CALL slacpy( ' ', n, n, v, ldu, a, lda )
1558 *
1559  CALL ssyt22( 1, uplo, n, m2, 0, a, ldu, wa2, d2, z, ldu,
1560  \$ v, ldu, tau, work, result( ntest ) )
1561 *
1562  ntest = ntest + 2
1563  CALL slacpy( ' ', n, n, v, ldu, a, lda )
1564  srnamt = 'SSYEVX'
1565  CALL ssyevx( 'N', 'I', uplo, n, a, ldu, vl, vu, il, iu,
1566  \$ abstol, m3, wa3, z, ldu, work, lwork, iwork,
1567  \$ iwork( 5*n+1 ), iinfo )
1568  IF( iinfo.NE.0 ) THEN
1569  WRITE( nounit, fmt = 9999 )'SSYEVX(N,I,' // uplo //
1570  \$ ')', iinfo, n, jtype, ioldsd
1571  info = abs( iinfo )
1572  IF( iinfo.LT.0 ) THEN
1573  RETURN
1574  ELSE
1575  result( ntest ) = ulpinv
1576  GO TO 690
1577  END IF
1578  END IF
1579 *
1580 * Do test 33 (or +54)
1581 *
1582  temp1 = ssxt1( 1, wa2, m2, wa3, m3, abstol, ulp, unfl )
1583  temp2 = ssxt1( 1, wa3, m3, wa2, m2, abstol, ulp, unfl )
1584  result( ntest ) = ( temp1+temp2 ) /
1585  \$ max( unfl, ulp*temp3 )
1586  690 CONTINUE
1587 *
1588  ntest = ntest + 1
1589  CALL slacpy( ' ', n, n, v, ldu, a, lda )
1590  srnamt = 'SSYEVX'
1591  CALL ssyevx( 'V', 'V', uplo, n, a, ldu, vl, vu, il, iu,
1592  \$ abstol, m2, wa2, z, ldu, work, lwork, iwork,
1593  \$ iwork( 5*n+1 ), iinfo )
1594  IF( iinfo.NE.0 ) THEN
1595  WRITE( nounit, fmt = 9999 )'SSYEVX(V,V,' // uplo //
1596  \$ ')', iinfo, n, jtype, ioldsd
1597  info = abs( iinfo )
1598  IF( iinfo.LT.0 ) THEN
1599  RETURN
1600  ELSE
1601  result( ntest ) = ulpinv
1602  result( ntest+1 ) = ulpinv
1603  result( ntest+2 ) = ulpinv
1604  GO TO 700
1605  END IF
1606  END IF
1607 *
1608 * Do tests 34 and 35 (or +54)
1609 *
1610  CALL slacpy( ' ', n, n, v, ldu, a, lda )
1611 *
1612  CALL ssyt22( 1, uplo, n, m2, 0, a, ldu, wa2, d2, z, ldu,
1613  \$ v, ldu, tau, work, result( ntest ) )
1614 *
1615  ntest = ntest + 2
1616  CALL slacpy( ' ', n, n, v, ldu, a, lda )
1617  srnamt = 'SSYEVX'
1618  CALL ssyevx( 'N', 'V', uplo, n, a, ldu, vl, vu, il, iu,
1619  \$ abstol, m3, wa3, z, ldu, work, lwork, iwork,
1620  \$ iwork( 5*n+1 ), iinfo )
1621  IF( iinfo.NE.0 ) THEN
1622  WRITE( nounit, fmt = 9999 )'SSYEVX(N,V,' // uplo //
1623  \$ ')', iinfo, n, jtype, ioldsd
1624  info = abs( iinfo )
1625  IF( iinfo.LT.0 ) THEN
1626  RETURN
1627  ELSE
1628  result( ntest ) = ulpinv
1629  GO TO 700
1630  END IF
1631  END IF
1632 *
1633  IF( m3.EQ.0 .AND. n.GT.0 ) THEN
1634  result( ntest ) = ulpinv
1635  GO TO 700
1636  END IF
1637 *
1638 * Do test 36 (or +54)
1639 *
1640  temp1 = ssxt1( 1, wa2, m2, wa3, m3, abstol, ulp, unfl )
1641  temp2 = ssxt1( 1, wa3, m3, wa2, m2, abstol, ulp, unfl )
1642  IF( n.GT.0 ) THEN
1643  temp3 = max( abs( wa1( 1 ) ), abs( wa1( n ) ) )
1644  ELSE
1645  temp3 = zero
1646  END IF
1647  result( ntest ) = ( temp1+temp2 ) /
1648  \$ max( unfl, temp3*ulp )
1649 *
1650  700 CONTINUE
1651 *
1652 * 5) Call SSPEV and SSPEVX.
1653 *
1654  CALL slacpy( ' ', n, n, v, ldu, a, lda )
1655 *
1656 * Load array WORK with the upper or lower triangular
1657 * part of the matrix in packed form.
1658 *
1659  IF( iuplo.EQ.1 ) THEN
1660  indx = 1
1661  DO 720 j = 1, n
1662  DO 710 i = 1, j
1663  work( indx ) = a( i, j )
1664  indx = indx + 1
1665  710 CONTINUE
1666  720 CONTINUE
1667  ELSE
1668  indx = 1
1669  DO 740 j = 1, n
1670  DO 730 i = j, n
1671  work( indx ) = a( i, j )
1672  indx = indx + 1
1673  730 CONTINUE
1674  740 CONTINUE
1675  END IF
1676 *
1677  ntest = ntest + 1
1678  srnamt = 'SSPEV'
1679  CALL sspev( 'V', uplo, n, work, d1, z, ldu, v, iinfo )
1680  IF( iinfo.NE.0 ) THEN
1681  WRITE( nounit, fmt = 9999 )'SSPEV(V,' // uplo // ')',
1682  \$ iinfo, n, jtype, ioldsd
1683  info = abs( iinfo )
1684  IF( iinfo.LT.0 ) THEN
1685  RETURN
1686  ELSE
1687  result( ntest ) = ulpinv
1688  result( ntest+1 ) = ulpinv
1689  result( ntest+2 ) = ulpinv
1690  GO TO 800
1691  END IF
1692  END IF
1693 *
1694 * Do tests 37 and 38 (or +54)
1695 *
1696  CALL ssyt21( 1, uplo, n, 0, a, lda, d1, d2, z, ldu, v,
1697  \$ ldu, tau, work, result( ntest ) )
1698 *
1699  IF( iuplo.EQ.1 ) THEN
1700  indx = 1
1701  DO 760 j = 1, n
1702  DO 750 i = 1, j
1703  work( indx ) = a( i, j )
1704  indx = indx + 1
1705  750 CONTINUE
1706  760 CONTINUE
1707  ELSE
1708  indx = 1
1709  DO 780 j = 1, n
1710  DO 770 i = j, n
1711  work( indx ) = a( i, j )
1712  indx = indx + 1
1713  770 CONTINUE
1714  780 CONTINUE
1715  END IF
1716 *
1717  ntest = ntest + 2
1718  srnamt = 'SSPEV'
1719  CALL sspev( 'N', uplo, n, work, d3, z, ldu, v, iinfo )
1720  IF( iinfo.NE.0 ) THEN
1721  WRITE( nounit, fmt = 9999 )'SSPEV(N,' // uplo // ')',
1722  \$ iinfo, n, jtype, ioldsd
1723  info = abs( iinfo )
1724  IF( iinfo.LT.0 ) THEN
1725  RETURN
1726  ELSE
1727  result( ntest ) = ulpinv
1728  GO TO 800
1729  END IF
1730  END IF
1731 *
1732 * Do test 39 (or +54)
1733 *
1734  temp1 = zero
1735  temp2 = zero
1736  DO 790 j = 1, n
1737  temp1 = max( temp1, abs( d1( j ) ), abs( d3( j ) ) )
1738  temp2 = max( temp2, abs( d1( j )-d3( j ) ) )
1739  790 CONTINUE
1740  result( ntest ) = temp2 / max( unfl,
1741  \$ ulp*max( temp1, temp2 ) )
1742 *
1743 * Load array WORK with the upper or lower triangular part
1744 * of the matrix in packed form.
1745 *
1746  800 CONTINUE
1747  IF( iuplo.EQ.1 ) THEN
1748  indx = 1
1749  DO 820 j = 1, n
1750  DO 810 i = 1, j
1751  work( indx ) = a( i, j )
1752  indx = indx + 1
1753  810 CONTINUE
1754  820 CONTINUE
1755  ELSE
1756  indx = 1
1757  DO 840 j = 1, n
1758  DO 830 i = j, n
1759  work( indx ) = a( i, j )
1760  indx = indx + 1
1761  830 CONTINUE
1762  840 CONTINUE
1763  END IF
1764 *
1765  ntest = ntest + 1
1766 *
1767  IF( n.GT.0 ) THEN
1768  temp3 = max( abs( d1( 1 ) ), abs( d1( n ) ) )
1769  IF( il.NE.1 ) THEN
1770  vl = d1( il ) - max( half*( d1( il )-d1( il-1 ) ),
1771  \$ ten*ulp*temp3, ten*rtunfl )
1772  ELSE IF( n.GT.0 ) THEN
1773  vl = d1( 1 ) - max( half*( d1( n )-d1( 1 ) ),
1774  \$ ten*ulp*temp3, ten*rtunfl )
1775  END IF
1776  IF( iu.NE.n ) THEN
1777  vu = d1( iu ) + max( half*( d1( iu+1 )-d1( iu ) ),
1778  \$ ten*ulp*temp3, ten*rtunfl )
1779  ELSE IF( n.GT.0 ) THEN
1780  vu = d1( n ) + max( half*( d1( n )-d1( 1 ) ),
1781  \$ ten*ulp*temp3, ten*rtunfl )
1782  END IF
1783  ELSE
1784  temp3 = zero
1785  vl = zero
1786  vu = one
1787  END IF
1788 *
1789  srnamt = 'SSPEVX'
1790  CALL sspevx( 'V', 'A', uplo, n, work, vl, vu, il, iu,
1791  \$ abstol, m, wa1, z, ldu, v, iwork,
1792  \$ iwork( 5*n+1 ), iinfo )
1793  IF( iinfo.NE.0 ) THEN
1794  WRITE( nounit, fmt = 9999 )'SSPEVX(V,A,' // uplo //
1795  \$ ')', iinfo, n, jtype, ioldsd
1796  info = abs( iinfo )
1797  IF( iinfo.LT.0 ) THEN
1798  RETURN
1799  ELSE
1800  result( ntest ) = ulpinv
1801  result( ntest+1 ) = ulpinv
1802  result( ntest+2 ) = ulpinv
1803  GO TO 900
1804  END IF
1805  END IF
1806 *
1807 * Do tests 40 and 41 (or +54)
1808 *
1809  CALL ssyt21( 1, uplo, n, 0, a, ldu, wa1, d2, z, ldu, v,
1810  \$ ldu, tau, work, result( ntest ) )
1811 *
1812  ntest = ntest + 2
1813 *
1814  IF( iuplo.EQ.1 ) THEN
1815  indx = 1
1816  DO 860 j = 1, n
1817  DO 850 i = 1, j
1818  work( indx ) = a( i, j )
1819  indx = indx + 1
1820  850 CONTINUE
1821  860 CONTINUE
1822  ELSE
1823  indx = 1
1824  DO 880 j = 1, n
1825  DO 870 i = j, n
1826  work( indx ) = a( i, j )
1827  indx = indx + 1
1828  870 CONTINUE
1829  880 CONTINUE
1830  END IF
1831 *
1832  srnamt = 'SSPEVX'
1833  CALL sspevx( 'N', 'A', uplo, n, work, vl, vu, il, iu,
1834  \$ abstol, m2, wa2, z, ldu, v, iwork,
1835  \$ iwork( 5*n+1 ), iinfo )
1836  IF( iinfo.NE.0 ) THEN
1837  WRITE( nounit, fmt = 9999 )'SSPEVX(N,A,' // uplo //
1838  \$ ')', iinfo, n, jtype, ioldsd
1839  info = abs( iinfo )
1840  IF( iinfo.LT.0 ) THEN
1841  RETURN
1842  ELSE
1843  result( ntest ) = ulpinv
1844  GO TO 900
1845  END IF
1846  END IF
1847 *
1848 * Do test 42 (or +54)
1849 *
1850  temp1 = zero
1851  temp2 = zero
1852  DO 890 j = 1, n
1853  temp1 = max( temp1, abs( wa1( j ) ), abs( wa2( j ) ) )
1854  temp2 = max( temp2, abs( wa1( j )-wa2( j ) ) )
1855  890 CONTINUE
1856  result( ntest ) = temp2 / max( unfl,
1857  \$ ulp*max( temp1, temp2 ) )
1858 *
1859  900 CONTINUE
1860  IF( iuplo.EQ.1 ) THEN
1861  indx = 1
1862  DO 920 j = 1, n
1863  DO 910 i = 1, j
1864  work( indx ) = a( i, j )
1865  indx = indx + 1
1866  910 CONTINUE
1867  920 CONTINUE
1868  ELSE
1869  indx = 1
1870  DO 940 j = 1, n
1871  DO 930 i = j, n
1872  work( indx ) = a( i, j )
1873  indx = indx + 1
1874  930 CONTINUE
1875  940 CONTINUE
1876  END IF
1877 *
1878  ntest = ntest + 1
1879 *
1880  srnamt = 'SSPEVX'
1881  CALL sspevx( 'V', 'I', uplo, n, work, vl, vu, il, iu,
1882  \$ abstol, m2, wa2, z, ldu, v, iwork,
1883  \$ iwork( 5*n+1 ), iinfo )
1884  IF( iinfo.NE.0 ) THEN
1885  WRITE( nounit, fmt = 9999 )'SSPEVX(V,I,' // uplo //
1886  \$ ')', iinfo, n, jtype, ioldsd
1887  info = abs( iinfo )
1888  IF( iinfo.LT.0 ) THEN
1889  RETURN
1890  ELSE
1891  result( ntest ) = ulpinv
1892  result( ntest+1 ) = ulpinv
1893  result( ntest+2 ) = ulpinv
1894  GO TO 990
1895  END IF
1896  END IF
1897 *
1898 * Do tests 43 and 44 (or +54)
1899 *
1900  CALL ssyt22( 1, uplo, n, m2, 0, a, ldu, wa2, d2, z, ldu,
1901  \$ v, ldu, tau, work, result( ntest ) )
1902 *
1903  ntest = ntest + 2
1904 *
1905  IF( iuplo.EQ.1 ) THEN
1906  indx = 1
1907  DO 960 j = 1, n
1908  DO 950 i = 1, j
1909  work( indx ) = a( i, j )
1910  indx = indx + 1
1911  950 CONTINUE
1912  960 CONTINUE
1913  ELSE
1914  indx = 1
1915  DO 980 j = 1, n
1916  DO 970 i = j, n
1917  work( indx ) = a( i, j )
1918  indx = indx + 1
1919  970 CONTINUE
1920  980 CONTINUE
1921  END IF
1922 *
1923  srnamt = 'SSPEVX'
1924  CALL sspevx( 'N', 'I', uplo, n, work, vl, vu, il, iu,
1925  \$ abstol, m3, wa3, z, ldu, v, iwork,
1926  \$ iwork( 5*n+1 ), iinfo )
1927  IF( iinfo.NE.0 ) THEN
1928  WRITE( nounit, fmt = 9999 )'SSPEVX(N,I,' // uplo //
1929  \$ ')', iinfo, n, jtype, ioldsd
1930  info = abs( iinfo )
1931  IF( iinfo.LT.0 ) THEN
1932  RETURN
1933  ELSE
1934  result( ntest ) = ulpinv
1935  GO TO 990
1936  END IF
1937  END IF
1938 *
1939  IF( m3.EQ.0 .AND. n.GT.0 ) THEN
1940  result( ntest ) = ulpinv
1941  GO TO 990
1942  END IF
1943 *
1944 * Do test 45 (or +54)
1945 *
1946  temp1 = ssxt1( 1, wa2, m2, wa3, m3, abstol, ulp, unfl )
1947  temp2 = ssxt1( 1, wa3, m3, wa2, m2, abstol, ulp, unfl )
1948  IF( n.GT.0 ) THEN
1949  temp3 = max( abs( wa1( 1 ) ), abs( wa1( n ) ) )
1950  ELSE
1951  temp3 = zero
1952  END IF
1953  result( ntest ) = ( temp1+temp2 ) /
1954  \$ max( unfl, temp3*ulp )
1955 *
1956  990 CONTINUE
1957  IF( iuplo.EQ.1 ) THEN
1958  indx = 1
1959  DO 1010 j = 1, n
1960  DO 1000 i = 1, j
1961  work( indx ) = a( i, j )
1962  indx = indx + 1
1963  1000 CONTINUE
1964  1010 CONTINUE
1965  ELSE
1966  indx = 1
1967  DO 1030 j = 1, n
1968  DO 1020 i = j, n
1969  work( indx ) = a( i, j )
1970  indx = indx + 1
1971  1020 CONTINUE
1972  1030 CONTINUE
1973  END IF
1974 *
1975  ntest = ntest + 1
1976 *
1977  srnamt = 'SSPEVX'
1978  CALL sspevx( 'V', 'V', uplo, n, work, vl, vu, il, iu,
1979  \$ abstol, m2, wa2, z, ldu, v, iwork,
1980  \$ iwork( 5*n+1 ), iinfo )
1981  IF( iinfo.NE.0 ) THEN
1982  WRITE( nounit, fmt = 9999 )'SSPEVX(V,V,' // uplo //
1983  \$ ')', iinfo, n, jtype, ioldsd
1984  info = abs( iinfo )
1985  IF( iinfo.LT.0 ) THEN
1986  RETURN
1987  ELSE
1988  result( ntest ) = ulpinv
1989  result( ntest+1 ) = ulpinv
1990  result( ntest+2 ) = ulpinv
1991  GO TO 1080
1992  END IF
1993  END IF
1994 *
1995 * Do tests 46 and 47 (or +54)
1996 *
1997  CALL ssyt22( 1, uplo, n, m2, 0, a, ldu, wa2, d2, z, ldu,
1998  \$ v, ldu, tau, work, result( ntest ) )
1999 *
2000  ntest = ntest + 2
2001 *
2002  IF( iuplo.EQ.1 ) THEN
2003  indx = 1
2004  DO 1050 j = 1, n
2005  DO 1040 i = 1, j
2006  work( indx ) = a( i, j )
2007  indx = indx + 1
2008  1040 CONTINUE
2009  1050 CONTINUE
2010  ELSE
2011  indx = 1
2012  DO 1070 j = 1, n
2013  DO 1060 i = j, n
2014  work( indx ) = a( i, j )
2015  indx = indx + 1
2016  1060 CONTINUE
2017  1070 CONTINUE
2018  END IF
2019 *
2020  srnamt = 'SSPEVX'
2021  CALL sspevx( 'N', 'V', uplo, n, work, vl, vu, il, iu,
2022  \$ abstol, m3, wa3, z, ldu, v, iwork,
2023  \$ iwork( 5*n+1 ), iinfo )
2024  IF( iinfo.NE.0 ) THEN
2025  WRITE( nounit, fmt = 9999 )'SSPEVX(N,V,' // uplo //
2026  \$ ')', iinfo, n, jtype, ioldsd
2027  info = abs( iinfo )
2028  IF( iinfo.LT.0 ) THEN
2029  RETURN
2030  ELSE
2031  result( ntest ) = ulpinv
2032  GO TO 1080
2033  END IF
2034  END IF
2035 *
2036  IF( m3.EQ.0 .AND. n.GT.0 ) THEN
2037  result( ntest ) = ulpinv
2038  GO TO 1080
2039  END IF
2040 *
2041 * Do test 48 (or +54)
2042 *
2043  temp1 = ssxt1( 1, wa2, m2, wa3, m3, abstol, ulp, unfl )
2044  temp2 = ssxt1( 1, wa3, m3, wa2, m2, abstol, ulp, unfl )
2045  IF( n.GT.0 ) THEN
2046  temp3 = max( abs( wa1( 1 ) ), abs( wa1( n ) ) )
2047  ELSE
2048  temp3 = zero
2049  END IF
2050  result( ntest ) = ( temp1+temp2 ) /
2051  \$ max( unfl, temp3*ulp )
2052 *
2053  1080 CONTINUE
2054 *
2055 * 6) Call SSBEV and SSBEVX.
2056 *
2057  IF( jtype.LE.7 ) THEN
2058  kd = 1
2059  ELSE IF( jtype.GE.8 .AND. jtype.LE.15 ) THEN
2060  kd = max( n-1, 0 )
2061  ELSE
2062  kd = ihbw
2063  END IF
2064 *
2065 * Load array V with the upper or lower triangular part
2066 * of the matrix in band form.
2067 *
2068  IF( iuplo.EQ.1 ) THEN
2069  DO 1100 j = 1, n
2070  DO 1090 i = max( 1, j-kd ), j
2071  v( kd+1+i-j, j ) = a( i, j )
2072  1090 CONTINUE
2073  1100 CONTINUE
2074  ELSE
2075  DO 1120 j = 1, n
2076  DO 1110 i = j, min( n, j+kd )
2077  v( 1+i-j, j ) = a( i, j )
2078  1110 CONTINUE
2079  1120 CONTINUE
2080  END IF
2081 *
2082  ntest = ntest + 1
2083  srnamt = 'SSBEV'
2084  CALL ssbev( 'V', uplo, n, kd, v, ldu, d1, z, ldu, work,
2085  \$ iinfo )
2086  IF( iinfo.NE.0 ) THEN
2087  WRITE( nounit, fmt = 9999 )'SSBEV(V,' // uplo // ')',
2088  \$ iinfo, n, jtype, ioldsd
2089  info = abs( iinfo )
2090  IF( iinfo.LT.0 ) THEN
2091  RETURN
2092  ELSE
2093  result( ntest ) = ulpinv
2094  result( ntest+1 ) = ulpinv
2095  result( ntest+2 ) = ulpinv
2096  GO TO 1180
2097  END IF
2098  END IF
2099 *
2100 * Do tests 49 and 50 (or ... )
2101 *
2102  CALL ssyt21( 1, uplo, n, 0, a, lda, d1, d2, z, ldu, v,
2103  \$ ldu, tau, work, result( ntest ) )
2104 *
2105  IF( iuplo.EQ.1 ) THEN
2106  DO 1140 j = 1, n
2107  DO 1130 i = max( 1, j-kd ), j
2108  v( kd+1+i-j, j ) = a( i, j )
2109  1130 CONTINUE
2110  1140 CONTINUE
2111  ELSE
2112  DO 1160 j = 1, n
2113  DO 1150 i = j, min( n, j+kd )
2114  v( 1+i-j, j ) = a( i, j )
2115  1150 CONTINUE
2116  1160 CONTINUE
2117  END IF
2118 *
2119  ntest = ntest + 2
2120  srnamt = 'SSBEV'
2121  CALL ssbev( 'N', uplo, n, kd, v, ldu, d3, z, ldu, work,
2122  \$ iinfo )
2123  IF( iinfo.NE.0 ) THEN
2124  WRITE( nounit, fmt = 9999 )'SSBEV(N,' // uplo // ')',
2125  \$ iinfo, n, jtype, ioldsd
2126  info = abs( iinfo )
2127  IF( iinfo.LT.0 ) THEN
2128  RETURN
2129  ELSE
2130  result( ntest ) = ulpinv
2131  GO TO 1180
2132  END IF
2133  END IF
2134 *
2135 * Do test 51 (or +54)
2136 *
2137  temp1 = zero
2138  temp2 = zero
2139  DO 1170 j = 1, n
2140  temp1 = max( temp1, abs( d1( j ) ), abs( d3( j ) ) )
2141  temp2 = max( temp2, abs( d1( j )-d3( j ) ) )
2142  1170 CONTINUE
2143  result( ntest ) = temp2 / max( unfl,
2144  \$ ulp*max( temp1, temp2 ) )
2145 *
2146 * Load array V with the upper or lower triangular part
2147 * of the matrix in band form.
2148 *
2149  1180 CONTINUE
2150  IF( iuplo.EQ.1 ) THEN
2151  DO 1200 j = 1, n
2152  DO 1190 i = max( 1, j-kd ), j
2153  v( kd+1+i-j, j ) = a( i, j )
2154  1190 CONTINUE
2155  1200 CONTINUE
2156  ELSE
2157  DO 1220 j = 1, n
2158  DO 1210 i = j, min( n, j+kd )
2159  v( 1+i-j, j ) = a( i, j )
2160  1210 CONTINUE
2161  1220 CONTINUE
2162  END IF
2163 *
2164  ntest = ntest + 1
2165  srnamt = 'SSBEVX'
2166  CALL ssbevx( 'V', 'A', uplo, n, kd, v, ldu, u, ldu, vl,
2167  \$ vu, il, iu, abstol, m, wa2, z, ldu, work,
2168  \$ iwork, iwork( 5*n+1 ), iinfo )
2169  IF( iinfo.NE.0 ) THEN
2170  WRITE( nounit, fmt = 9999 )'SSBEVX(V,A,' // uplo //
2171  \$ ')', iinfo, n, jtype, ioldsd
2172  info = abs( iinfo )
2173  IF( iinfo.LT.0 ) THEN
2174  RETURN
2175  ELSE
2176  result( ntest ) = ulpinv
2177  result( ntest+1 ) = ulpinv
2178  result( ntest+2 ) = ulpinv
2179  GO TO 1280
2180  END IF
2181  END IF
2182 *
2183 * Do tests 52 and 53 (or +54)
2184 *
2185  CALL ssyt21( 1, uplo, n, 0, a, ldu, wa2, d2, z, ldu, v,
2186  \$ ldu, tau, work, result( ntest ) )
2187 *
2188  ntest = ntest + 2
2189 *
2190  IF( iuplo.EQ.1 ) THEN
2191  DO 1240 j = 1, n
2192  DO 1230 i = max( 1, j-kd ), j
2193  v( kd+1+i-j, j ) = a( i, j )
2194  1230 CONTINUE
2195  1240 CONTINUE
2196  ELSE
2197  DO 1260 j = 1, n
2198  DO 1250 i = j, min( n, j+kd )
2199  v( 1+i-j, j ) = a( i, j )
2200  1250 CONTINUE
2201  1260 CONTINUE
2202  END IF
2203 *
2204  srnamt = 'SSBEVX'
2205  CALL ssbevx( 'N', 'A', uplo, n, kd, v, ldu, u, ldu, vl,
2206  \$ vu, il, iu, abstol, m3, wa3, z, ldu, work,
2207  \$ iwork, iwork( 5*n+1 ), iinfo )
2208  IF( iinfo.NE.0 ) THEN
2209  WRITE( nounit, fmt = 9999 )'SSBEVX(N,A,' // uplo //
2210  \$ ')', iinfo, n, jtype, ioldsd
2211  info = abs( iinfo )
2212  IF( iinfo.LT.0 ) THEN
2213  RETURN
2214  ELSE
2215  result( ntest ) = ulpinv
2216  GO TO 1280
2217  END IF
2218  END IF
2219 *
2220 * Do test 54 (or +54)
2221 *
2222  temp1 = zero
2223  temp2 = zero
2224  DO 1270 j = 1, n
2225  temp1 = max( temp1, abs( wa2( j ) ), abs( wa3( j ) ) )
2226  temp2 = max( temp2, abs( wa2( j )-wa3( j ) ) )
2227  1270 CONTINUE
2228  result( ntest ) = temp2 / max( unfl,
2229  \$ ulp*max( temp1, temp2 ) )
2230 *
2231  1280 CONTINUE
2232  ntest = ntest + 1
2233  IF( iuplo.EQ.1 ) THEN
2234  DO 1300 j = 1, n
2235  DO 1290 i = max( 1, j-kd ), j
2236  v( kd+1+i-j, j ) = a( i, j )
2237  1290 CONTINUE
2238  1300 CONTINUE
2239  ELSE
2240  DO 1320 j = 1, n
2241  DO 1310 i = j, min( n, j+kd )
2242  v( 1+i-j, j ) = a( i, j )
2243  1310 CONTINUE
2244  1320 CONTINUE
2245  END IF
2246 *
2247  srnamt = 'SSBEVX'
2248  CALL ssbevx( 'V', 'I', uplo, n, kd, v, ldu, u, ldu, vl,
2249  \$ vu, il, iu, abstol, m2, wa2, z, ldu, work,
2250  \$ iwork, iwork( 5*n+1 ), iinfo )
2251  IF( iinfo.NE.0 ) THEN
2252  WRITE( nounit, fmt = 9999 )'SSBEVX(V,I,' // uplo //
2253  \$ ')', iinfo, n, jtype, ioldsd
2254  info = abs( iinfo )
2255  IF( iinfo.LT.0 ) THEN
2256  RETURN
2257  ELSE
2258  result( ntest ) = ulpinv
2259  result( ntest+1 ) = ulpinv
2260  result( ntest+2 ) = ulpinv
2261  GO TO 1370
2262  END IF
2263  END IF
2264 *
2265 * Do tests 55 and 56 (or +54)
2266 *
2267  CALL ssyt22( 1, uplo, n, m2, 0, a, ldu, wa2, d2, z, ldu,
2268  \$ v, ldu, tau, work, result( ntest ) )
2269 *
2270  ntest = ntest + 2
2271 *
2272  IF( iuplo.EQ.1 ) THEN
2273  DO 1340 j = 1, n
2274  DO 1330 i = max( 1, j-kd ), j
2275  v( kd+1+i-j, j ) = a( i, j )
2276  1330 CONTINUE
2277  1340 CONTINUE
2278  ELSE
2279  DO 1360 j = 1, n
2280  DO 1350 i = j, min( n, j+kd )
2281  v( 1+i-j, j ) = a( i, j )
2282  1350 CONTINUE
2283  1360 CONTINUE
2284  END IF
2285 *
2286  srnamt = 'SSBEVX'
2287  CALL ssbevx( 'N', 'I', uplo, n, kd, v, ldu, u, ldu, vl,
2288  \$ vu, il, iu, abstol, m3, wa3, z, ldu, work,
2289  \$ iwork, iwork( 5*n+1 ), iinfo )
2290  IF( iinfo.NE.0 ) THEN
2291  WRITE( nounit, fmt = 9999 )'SSBEVX(N,I,' // uplo //
2292  \$ ')', iinfo, n, jtype, ioldsd
2293  info = abs( iinfo )
2294  IF( iinfo.LT.0 ) THEN
2295  RETURN
2296  ELSE
2297  result( ntest ) = ulpinv
2298  GO TO 1370
2299  END IF
2300  END IF
2301 *
2302 * Do test 57 (or +54)
2303 *
2304  temp1 = ssxt1( 1, wa2, m2, wa3, m3, abstol, ulp, unfl )
2305  temp2 = ssxt1( 1, wa3, m3, wa2, m2, abstol, ulp, unfl )
2306  IF( n.GT.0 ) THEN
2307  temp3 = max( abs( wa1( 1 ) ), abs( wa1( n ) ) )
2308  ELSE
2309  temp3 = zero
2310  END IF
2311  result( ntest ) = ( temp1+temp2 ) /
2312  \$ max( unfl, temp3*ulp )
2313 *
2314  1370 CONTINUE
2315  ntest = ntest + 1
2316  IF( iuplo.EQ.1 ) THEN
2317  DO 1390 j = 1, n
2318  DO 1380 i = max( 1, j-kd ), j
2319  v( kd+1+i-j, j ) = a( i, j )
2320  1380 CONTINUE
2321  1390 CONTINUE
2322  ELSE
2323  DO 1410 j = 1, n
2324  DO 1400 i = j, min( n, j+kd )
2325  v( 1+i-j, j ) = a( i, j )
2326  1400 CONTINUE
2327  1410 CONTINUE
2328  END IF
2329 *
2330  srnamt = 'SSBEVX'
2331  CALL ssbevx( 'V', 'V', uplo, n, kd, v, ldu, u, ldu, vl,
2332  \$ vu, il, iu, abstol, m2, wa2, z, ldu, work,
2333  \$ iwork, iwork( 5*n+1 ), iinfo )
2334  IF( iinfo.NE.0 ) THEN
2335  WRITE( nounit, fmt = 9999 )'SSBEVX(V,V,' // uplo //
2336  \$ ')', iinfo, n, jtype, ioldsd
2337  info = abs( iinfo )
2338  IF( iinfo.LT.0 ) THEN
2339  RETURN
2340  ELSE
2341  result( ntest ) = ulpinv
2342  result( ntest+1 ) = ulpinv
2343  result( ntest+2 ) = ulpinv
2344  GO TO 1460
2345  END IF
2346  END IF
2347 *
2348 * Do tests 58 and 59 (or +54)
2349 *
2350  CALL ssyt22( 1, uplo, n, m2, 0, a, ldu, wa2, d2, z, ldu,
2351  \$ v, ldu, tau, work, result( ntest ) )
2352 *
2353  ntest = ntest + 2
2354 *
2355  IF( iuplo.EQ.1 ) THEN
2356  DO 1430 j = 1, n
2357  DO 1420 i = max( 1, j-kd ), j
2358  v( kd+1+i-j, j ) = a( i, j )
2359  1420 CONTINUE
2360  1430 CONTINUE
2361  ELSE
2362  DO 1450 j = 1, n
2363  DO 1440 i = j, min( n, j+kd )
2364  v( 1+i-j, j ) = a( i, j )
2365  1440 CONTINUE
2366  1450 CONTINUE
2367  END IF
2368 *
2369  srnamt = 'SSBEVX'
2370  CALL ssbevx( 'N', 'V', uplo, n, kd, v, ldu, u, ldu, vl,
2371  \$ vu, il, iu, abstol, m3, wa3, z, ldu, work,
2372  \$ iwork, iwork( 5*n+1 ), iinfo )
2373  IF( iinfo.NE.0 ) THEN
2374  WRITE( nounit, fmt = 9999 )'SSBEVX(N,V,' // uplo //
2375  \$ ')', iinfo, n, jtype, ioldsd
2376  info = abs( iinfo )
2377  IF( iinfo.LT.0 ) THEN
2378  RETURN
2379  ELSE
2380  result( ntest ) = ulpinv
2381  GO TO 1460
2382  END IF
2383  END IF
2384 *
2385  IF( m3.EQ.0 .AND. n.GT.0 ) THEN
2386  result( ntest ) = ulpinv
2387  GO TO 1460
2388  END IF
2389 *
2390 * Do test 60 (or +54)
2391 *
2392  temp1 = ssxt1( 1, wa2, m2, wa3, m3, abstol, ulp, unfl )
2393  temp2 = ssxt1( 1, wa3, m3, wa2, m2, abstol, ulp, unfl )
2394  IF( n.GT.0 ) THEN
2395  temp3 = max( abs( wa1( 1 ) ), abs( wa1( n ) ) )
2396  ELSE
2397  temp3 = zero
2398  END IF
2399  result( ntest ) = ( temp1+temp2 ) /
2400  \$ max( unfl, temp3*ulp )
2401 *
2402  1460 CONTINUE
2403 *
2404 * 7) Call SSYEVD
2405 *
2406  CALL slacpy( ' ', n, n, a, lda, v, ldu )
2407 *
2408  ntest = ntest + 1
2409  srnamt = 'SSYEVD'
2410  CALL ssyevd( 'V', uplo, n, a, ldu, d1, work, lwedc,
2411  \$ iwork, liwedc, iinfo )
2412  IF( iinfo.NE.0 ) THEN
2413  WRITE( nounit, fmt = 9999 )'SSYEVD(V,' // uplo //
2414  \$ ')', iinfo, n, jtype, ioldsd
2415  info = abs( iinfo )
2416  IF( iinfo.LT.0 ) THEN
2417  RETURN
2418  ELSE
2419  result( ntest ) = ulpinv
2420  result( ntest+1 ) = ulpinv
2421  result( ntest+2 ) = ulpinv
2422  GO TO 1480
2423  END IF
2424  END IF
2425 *
2426 * Do tests 61 and 62 (or +54)
2427 *
2428  CALL ssyt21( 1, uplo, n, 0, v, ldu, d1, d2, a, ldu, z,
2429  \$ ldu, tau, work, result( ntest ) )
2430 *
2431  CALL slacpy( ' ', n, n, v, ldu, a, lda )
2432 *
2433  ntest = ntest + 2
2434  srnamt = 'SSYEVD'
2435  CALL ssyevd( 'N', uplo, n, a, ldu, d3, work, lwedc,
2436  \$ iwork, liwedc, iinfo )
2437  IF( iinfo.NE.0 ) THEN
2438  WRITE( nounit, fmt = 9999 )'SSYEVD(N,' // uplo //
2439  \$ ')', iinfo, n, jtype, ioldsd
2440  info = abs( iinfo )
2441  IF( iinfo.LT.0 ) THEN
2442  RETURN
2443  ELSE
2444  result( ntest ) = ulpinv
2445  GO TO 1480
2446  END IF
2447  END IF
2448 *
2449 * Do test 63 (or +54)
2450 *
2451  temp1 = zero
2452  temp2 = zero
2453  DO 1470 j = 1, n
2454  temp1 = max( temp1, abs( d1( j ) ), abs( d3( j ) ) )
2455  temp2 = max( temp2, abs( d1( j )-d3( j ) ) )
2456  1470 CONTINUE
2457  result( ntest ) = temp2 / max( unfl,
2458  \$ ulp*max( temp1, temp2 ) )
2459 *
2460  1480 CONTINUE
2461 *
2462 * 8) Call SSPEVD.
2463 *
2464  CALL slacpy( ' ', n, n, v, ldu, a, lda )
2465 *
2466 * Load array WORK with the upper or lower triangular
2467 * part of the matrix in packed form.
2468 *
2469  IF( iuplo.EQ.1 ) THEN
2470  indx = 1
2471  DO 1500 j = 1, n
2472  DO 1490 i = 1, j
2473  work( indx ) = a( i, j )
2474  indx = indx + 1
2475  1490 CONTINUE
2476  1500 CONTINUE
2477  ELSE
2478  indx = 1
2479  DO 1520 j = 1, n
2480  DO 1510 i = j, n
2481  work( indx ) = a( i, j )
2482  indx = indx + 1
2483  1510 CONTINUE
2484  1520 CONTINUE
2485  END IF
2486 *
2487  ntest = ntest + 1
2488  srnamt = 'SSPEVD'
2489  CALL sspevd( 'V', uplo, n, work, d1, z, ldu,
2490  \$ work( indx ), lwedc-indx+1, iwork, liwedc,
2491  \$ iinfo )
2492  IF( iinfo.NE.0 ) THEN
2493  WRITE( nounit, fmt = 9999 )'SSPEVD(V,' // uplo //
2494  \$ ')', iinfo, n, jtype, ioldsd
2495  info = abs( iinfo )
2496  IF( iinfo.LT.0 ) THEN
2497  RETURN
2498  ELSE
2499  result( ntest ) = ulpinv
2500  result( ntest+1 ) = ulpinv
2501  result( ntest+2 ) = ulpinv
2502  GO TO 1580
2503  END IF
2504  END IF
2505 *
2506 * Do tests 64 and 65 (or +54)
2507 *
2508  CALL ssyt21( 1, uplo, n, 0, a, lda, d1, d2, z, ldu, v,
2509  \$ ldu, tau, work, result( ntest ) )
2510 *
2511  IF( iuplo.EQ.1 ) THEN
2512  indx = 1
2513  DO 1540 j = 1, n
2514  DO 1530 i = 1, j
2515 *
2516  work( indx ) = a( i, j )
2517  indx = indx + 1
2518  1530 CONTINUE
2519  1540 CONTINUE
2520  ELSE
2521  indx = 1
2522  DO 1560 j = 1, n
2523  DO 1550 i = j, n
2524  work( indx ) = a( i, j )
2525  indx = indx + 1
2526  1550 CONTINUE
2527  1560 CONTINUE
2528  END IF
2529 *
2530  ntest = ntest + 2
2531  srnamt = 'SSPEVD'
2532  CALL sspevd( 'N', uplo, n, work, d3, z, ldu,
2533  \$ work( indx ), lwedc-indx+1, iwork, liwedc,
2534  \$ iinfo )
2535  IF( iinfo.NE.0 ) THEN
2536  WRITE( nounit, fmt = 9999 )'SSPEVD(N,' // uplo //
2537  \$ ')', iinfo, n, jtype, ioldsd
2538  info = abs( iinfo )
2539  IF( iinfo.LT.0 ) THEN
2540  RETURN
2541  ELSE
2542  result( ntest ) = ulpinv
2543  GO TO 1580
2544  END IF
2545  END IF
2546 *
2547 * Do test 66 (or +54)
2548 *
2549  temp1 = zero
2550  temp2 = zero
2551  DO 1570 j = 1, n
2552  temp1 = max( temp1, abs( d1( j ) ), abs( d3( j ) ) )
2553  temp2 = max( temp2, abs( d1( j )-d3( j ) ) )
2554  1570 CONTINUE
2555  result( ntest ) = temp2 / max( unfl,
2556  \$ ulp*max( temp1, temp2 ) )
2557  1580 CONTINUE
2558 *
2559 * 9) Call SSBEVD.
2560 *
2561  IF( jtype.LE.7 ) THEN
2562  kd = 1
2563  ELSE IF( jtype.GE.8 .AND. jtype.LE.15 ) THEN
2564  kd = max( n-1, 0 )
2565  ELSE
2566  kd = ihbw
2567  END IF
2568 *
2569 * Load array V with the upper or lower triangular part
2570 * of the matrix in band form.
2571 *
2572  IF( iuplo.EQ.1 ) THEN
2573  DO 1600 j = 1, n
2574  DO 1590 i = max( 1, j-kd ), j
2575  v( kd+1+i-j, j ) = a( i, j )
2576  1590 CONTINUE
2577  1600 CONTINUE
2578  ELSE
2579  DO 1620 j = 1, n
2580  DO 1610 i = j, min( n, j+kd )
2581  v( 1+i-j, j ) = a( i, j )
2582  1610 CONTINUE
2583  1620 CONTINUE
2584  END IF
2585 *
2586  ntest = ntest + 1
2587  srnamt = 'SSBEVD'
2588  CALL ssbevd( 'V', uplo, n, kd, v, ldu, d1, z, ldu, work,
2589  \$ lwedc, iwork, liwedc, iinfo )
2590  IF( iinfo.NE.0 ) THEN
2591  WRITE( nounit, fmt = 9999 )'SSBEVD(V,' // uplo //
2592  \$ ')', iinfo, n, jtype, ioldsd
2593  info = abs( iinfo )
2594  IF( iinfo.LT.0 ) THEN
2595  RETURN
2596  ELSE
2597  result( ntest ) = ulpinv
2598  result( ntest+1 ) = ulpinv
2599  result( ntest+2 ) = ulpinv
2600  GO TO 1680
2601  END IF
2602  END IF
2603 *
2604 * Do tests 67 and 68 (or +54)
2605 *
2606  CALL ssyt21( 1, uplo, n, 0, a, lda, d1, d2, z, ldu, v,
2607  \$ ldu, tau, work, result( ntest ) )
2608 *
2609  IF( iuplo.EQ.1 ) THEN
2610  DO 1640 j = 1, n
2611  DO 1630 i = max( 1, j-kd ), j
2612  v( kd+1+i-j, j ) = a( i, j )
2613  1630 CONTINUE
2614  1640 CONTINUE
2615  ELSE
2616  DO 1660 j = 1, n
2617  DO 1650 i = j, min( n, j+kd )
2618  v( 1+i-j, j ) = a( i, j )
2619  1650 CONTINUE
2620  1660 CONTINUE
2621  END IF
2622 *
2623  ntest = ntest + 2
2624  srnamt = 'SSBEVD'
2625  CALL ssbevd( 'N', uplo, n, kd, v, ldu, d3, z, ldu, work,
2626  \$ lwedc, iwork, liwedc, iinfo )
2627  IF( iinfo.NE.0 ) THEN
2628  WRITE( nounit, fmt = 9999 )'SSBEVD(N,' // uplo //
2629  \$ ')', iinfo, n, jtype, ioldsd
2630  info = abs( iinfo )
2631  IF( iinfo.LT.0 ) THEN
2632  RETURN
2633  ELSE
2634  result( ntest ) = ulpinv
2635  GO TO 1680
2636  END IF
2637  END IF
2638 *
2639 * Do test 69 (or +54)
2640 *
2641  temp1 = zero
2642  temp2 = zero
2643  DO 1670 j = 1, n
2644  temp1 = max( temp1, abs( d1( j ) ), abs( d3( j ) ) )
2645  temp2 = max( temp2, abs( d1( j )-d3( j ) ) )
2646  1670 CONTINUE
2647  result( ntest ) = temp2 / max( unfl,
2648  \$ ulp*max( temp1, temp2 ) )
2649 *
2650  1680 CONTINUE
2651 *
2652 *
2653  CALL slacpy( ' ', n, n, a, lda, v, ldu )
2654  ntest = ntest + 1
2655  srnamt = 'SSYEVR'
2656  CALL ssyevr( 'V', 'A', uplo, n, a, ldu, vl, vu, il, iu,
2657  \$ abstol, m, wa1, z, ldu, iwork, work, lwork,
2658  \$ iwork(2*n+1), liwork-2*n, iinfo )
2659  IF( iinfo.NE.0 ) THEN
2660  WRITE( nounit, fmt = 9999 )'SSYEVR(V,A,' // uplo //
2661  \$ ')', iinfo, n, jtype, ioldsd
2662  info = abs( iinfo )
2663  IF( iinfo.LT.0 ) THEN
2664  RETURN
2665  ELSE
2666  result( ntest ) = ulpinv
2667  result( ntest+1 ) = ulpinv
2668  result( ntest+2 ) = ulpinv
2669  GO TO 1700
2670  END IF
2671  END IF
2672 *
2673 * Do tests 70 and 71 (or ... )
2674 *
2675  CALL slacpy( ' ', n, n, v, ldu, a, lda )
2676 *
2677  CALL ssyt21( 1, uplo, n, 0, a, ldu, wa1, d2, z, ldu, v,
2678  \$ ldu, tau, work, result( ntest ) )
2679 *
2680  ntest = ntest + 2
2681  srnamt = 'SSYEVR'
2682  CALL ssyevr( 'N', 'A', uplo, n, a, ldu, vl, vu, il, iu,
2683  \$ abstol, m2, wa2, z, ldu, iwork, work, lwork,
2684  \$ iwork(2*n+1), liwork-2*n, iinfo )
2685  IF( iinfo.NE.0 ) THEN
2686  WRITE( nounit, fmt = 9999 )'SSYEVR(N,A,' // uplo //
2687  \$ ')', iinfo, n, jtype, ioldsd
2688  info = abs( iinfo )
2689  IF( iinfo.LT.0 ) THEN
2690  RETURN
2691  ELSE
2692  result( ntest ) = ulpinv
2693  GO TO 1700
2694  END IF
2695  END IF
2696 *
2697 * Do test 72 (or ... )
2698 *
2699  temp1 = zero
2700  temp2 = zero
2701  DO 1690 j = 1, n
2702  temp1 = max( temp1, abs( wa1( j ) ), abs( wa2( j ) ) )
2703  temp2 = max( temp2, abs( wa1( j )-wa2( j ) ) )
2704  1690 CONTINUE
2705  result( ntest ) = temp2 / max( unfl,
2706  \$ ulp*max( temp1, temp2 ) )
2707 *
2708  1700 CONTINUE
2709 *
2710  ntest = ntest + 1
2711  CALL slacpy( ' ', n, n, v, ldu, a, lda )
2712  srnamt = 'SSYEVR'
2713  CALL ssyevr( 'V', 'I', uplo, n, a, ldu, vl, vu, il, iu,
2714  \$ abstol, m2, wa2, z, ldu, iwork, work, lwork,
2715  \$ iwork(2*n+1), liwork-2*n, iinfo )
2716  IF( iinfo.NE.0 ) THEN
2717  WRITE( nounit, fmt = 9999 )'SSYEVR(V,I,' // uplo //
2718  \$ ')', iinfo, n, jtype, ioldsd
2719  info = abs( iinfo )
2720  IF( iinfo.LT.0 ) THEN
2721  RETURN
2722  ELSE
2723  result( ntest ) = ulpinv
2724  result( ntest+1 ) = ulpinv
2725  result( ntest+2 ) = ulpinv
2726  GO TO 1710
2727  END IF
2728  END IF
2729 *
2730 * Do tests 73 and 74 (or +54)
2731 *
2732  CALL slacpy( ' ', n, n, v, ldu, a, lda )
2733 *
2734  CALL ssyt22( 1, uplo, n, m2, 0, a, ldu, wa2, d2, z, ldu,
2735  \$ v, ldu, tau, work, result( ntest ) )
2736 *
2737  ntest = ntest + 2
2738  CALL slacpy( ' ', n, n, v, ldu, a, lda )
2739  srnamt = 'SSYEVR'
2740  CALL ssyevr( 'N', 'I', uplo, n, a, ldu, vl, vu, il, iu,
2741  \$ abstol, m3, wa3, z, ldu, iwork, work, lwork,
2742  \$ iwork(2*n+1), liwork-2*n, iinfo )
2743  IF( iinfo.NE.0 ) THEN
2744  WRITE( nounit, fmt = 9999 )'SSYEVR(N,I,' // uplo //
2745  \$ ')', iinfo, n, jtype, ioldsd
2746  info = abs( iinfo )
2747  IF( iinfo.LT.0 ) THEN
2748  RETURN
2749  ELSE
2750  result( ntest ) = ulpinv
2751  GO TO 1710
2752  END IF
2753  END IF
2754 *
2755 * Do test 75 (or +54)
2756 *
2757  temp1 = ssxt1( 1, wa2, m2, wa3, m3, abstol, ulp, unfl )
2758  temp2 = ssxt1( 1, wa3, m3, wa2, m2, abstol, ulp, unfl )
2759  result( ntest ) = ( temp1+temp2 ) /
2760  \$ max( unfl, ulp*temp3 )
2761  1710 CONTINUE
2762 *
2763  ntest = ntest + 1
2764  CALL slacpy( ' ', n, n, v, ldu, a, lda )
2765  srnamt = 'SSYEVR'
2766  CALL ssyevr( 'V', 'V', uplo, n, a, ldu, vl, vu, il, iu,
2767  \$ abstol, m2, wa2, z, ldu, iwork, work, lwork,
2768  \$ iwork(2*n+1), liwork-2*n, iinfo )
2769  IF( iinfo.NE.0 ) THEN
2770  WRITE( nounit, fmt = 9999 )'SSYEVR(V,V,' // uplo //
2771  \$ ')', iinfo, n, jtype, ioldsd
2772  info = abs( iinfo )
2773  IF( iinfo.LT.0 ) THEN
2774  RETURN
2775  ELSE
2776  result( ntest ) = ulpinv
2777  result( ntest+1 ) = ulpinv
2778  result( ntest+2 ) = ulpinv
2779  GO TO 700
2780  END IF
2781  END IF
2782 *
2783 * Do tests 76 and 77 (or +54)
2784 *
2785  CALL slacpy( ' ', n, n, v, ldu, a, lda )
2786 *
2787  CALL ssyt22( 1, uplo, n, m2, 0, a, ldu, wa2, d2, z, ldu,
2788  \$ v, ldu, tau, work, result( ntest ) )
2789 *
2790  ntest = ntest + 2
2791  CALL slacpy( ' ', n, n, v, ldu, a, lda )
2792  srnamt = 'SSYEVR'
2793  CALL ssyevr( 'N', 'V', uplo, n, a, ldu, vl, vu, il, iu,
2794  \$ abstol, m3, wa3, z, ldu, iwork, work, lwork,
2795  \$ iwork(2*n+1), liwork-2*n, iinfo )
2796  IF( iinfo.NE.0 ) THEN
2797  WRITE( nounit, fmt = 9999 )'SSYEVR(N,V,' // uplo //
2798  \$ ')', iinfo, n, jtype, ioldsd
2799  info = abs( iinfo )
2800  IF( iinfo.LT.0 ) THEN
2801  RETURN
2802  ELSE
2803  result( ntest ) = ulpinv
2804  GO TO 700
2805  END IF
2806  END IF
2807 *
2808  IF( m3.EQ.0 .AND. n.GT.0 ) THEN
2809  result( ntest ) = ulpinv
2810  GO TO 700
2811  END IF
2812 *
2813 * Do test 78 (or +54)
2814 *
2815  temp1 = ssxt1( 1, wa2, m2, wa3, m3, abstol, ulp, unfl )
2816  temp2 = ssxt1( 1, wa3, m3, wa2, m2, abstol, ulp, unfl )
2817  IF( n.GT.0 ) THEN
2818  temp3 = max( abs( wa1( 1 ) ), abs( wa1( n ) ) )
2819  ELSE
2820  temp3 = zero
2821  END IF
2822  result( ntest ) = ( temp1+temp2 ) /
2823  \$ max( unfl, temp3*ulp )
2824 *
2825  CALL slacpy( ' ', n, n, v, ldu, a, lda )
2826 *
2827  1720 CONTINUE
2828 *
2829 * End of Loop -- Check for RESULT(j) > THRESH
2830 *
2831  ntestt = ntestt + ntest
2832 *
2833  CALL slafts( 'SST', n, n, jtype, ntest, result, ioldsd,
2834  \$ thresh, nounit, nerrs )
2835 *
2836  1730 CONTINUE
2837  1740 CONTINUE
2838 *
2839 * Summary
2840 *
2841  CALL alasvm( 'SST', nounit, nerrs, ntestt, 0 )
2842 *
2843  9999 FORMAT( ' SDRVST: ', a, ' returned INFO=', i6, '.', / 9x, 'N=',
2844  \$ i6, ', JTYPE=', i6, ', ISEED=(', 3( i5, ',' ), i5, ')' )
2845 *
2846  RETURN
2847 *
2848 * End of SDRVST
2849 *
subroutine alasvm(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASVM
Definition: alasvm.f:75
subroutine ssyevr(JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)
SSYEVR computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices ...
Definition: ssyevr.f:336
subroutine sspevd(JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK, IWORK, LIWORK, INFO)
SSPEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matric...
Definition: sspevd.f:180
subroutine sstevd(JOBZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK, LIWORK, INFO)
SSTEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matric...
Definition: sstevd.f:165
subroutine sstt22(N, M, KBAND, AD, AE, SD, SE, U, LDU, WORK, LDWORK, RESULT)
SSTT22
Definition: sstt22.f:141
subroutine ssbevd(JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK, LWORK, IWORK, LIWORK, INFO)
SSBEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matric...
Definition: ssbevd.f:195
subroutine ssyevx(JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, LWORK, IWORK, IFAIL, INFO)
SSYEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices ...
Definition: ssyevx.f:255
subroutine slatmr(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, RSIGN, GRADE, DL, MODEL, CONDL, DR, MODER, CONDR, PIVTNG, IPIVOT, KL, KU, SPARSE, ANORM, PACK, A, LDA, IWORK, INFO)
SLATMR
Definition: slatmr.f:473
subroutine slafts(TYPE, M, N, IMAT, NTESTS, RESULT, ISEED, THRESH, IOUNIT, IE)
SLAFTS
Definition: slafts.f:101
subroutine sstevr(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)
SSTEVR computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matric...
Definition: sstevr.f:308
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
subroutine slacpy(UPLO, M, N, A, LDA, B, LDB)
SLACPY copies all or part of one two-dimensional array to another.
Definition: slacpy.f:105
subroutine slatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
SLATMS
Definition: slatms.f:323
subroutine slaset(UPLO, M, N, ALPHA, BETA, A, LDA)
SLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values...
Definition: slaset.f:112
subroutine ssbev(JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK, INFO)
SSBEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrice...
Definition: ssbev.f:148
subroutine sspev(JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, INFO)
SSPEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrice...
Definition: sspev.f:132
subroutine sstevx(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL, INFO)
SSTEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matric...
Definition: sstevx.f:229
real function slarnd(IDIST, ISEED)
SLARND
Definition: slarnd.f:75
real function ssxt1(IJOB, D1, N1, D2, N2, ABSTOL, ULP, UNFL)
SSXT1
Definition: ssxt1.f:108
subroutine ssyevd(JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK, LIWORK, INFO)
SSYEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices ...
Definition: ssyevd.f:185
subroutine ssbevx(JOBZ, RANGE, UPLO, N, KD, AB, LDAB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL, INFO)
SSBEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matric...
Definition: ssbevx.f:267
subroutine ssyt21(ITYPE, UPLO, N, KBAND, A, LDA, D, E, U, LDU, V, LDV, TAU, WORK, RESULT)
SSYT21
Definition: ssyt21.f:207
real function slamch(CMACH)
SLAMCH
Definition: slamch.f:69
subroutine ssyev(JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, INFO)
SSYEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices ...
Definition: ssyev.f:134
subroutine sspevx(JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL, INFO)
SSPEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matric...
Definition: sspevx.f:236
subroutine sstev(JOBZ, N, D, E, Z, LDZ, WORK, INFO)
SSTEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrice...
Definition: sstev.f:118
subroutine ssyt22(ITYPE, UPLO, N, M, KBAND, A, LDA, D, E, U, LDU, V, LDV, TAU, WORK, RESULT)
SSYT22
Definition: ssyt22.f:157
subroutine sstt21(N, KBAND, AD, AE, SD, SE, U, LDU, WORK, RESULT)
SSTT21
Definition: sstt21.f:129

Here is the call graph for this function:

Here is the caller graph for this function: