001:       SUBROUTINE DSYR2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA)
002: *     .. Scalar Arguments ..
003:       DOUBLE PRECISION ALPHA
004:       INTEGER INCX,INCY,LDA,N
005:       CHARACTER UPLO
006: *     ..
007: *     .. Array Arguments ..
008:       DOUBLE PRECISION A(LDA,*),X(*),Y(*)
009: *     ..
010: *
011: *  Purpose
012: *  =======
013: *
014: *  DSYR2  performs the symmetric rank 2 operation
015: *
016: *     A := alpha*x*y' + alpha*y*x' + A,
017: *
018: *  where alpha is a scalar, x and y are n element vectors and A is an n
019: *  by n symmetric matrix.
020: *
021: *  Arguments
022: *  ==========
023: *
024: *  UPLO   - CHARACTER*1.
025: *           On entry, UPLO specifies whether the upper or lower
026: *           triangular part of the array A is to be referenced as
027: *           follows:
028: *
029: *              UPLO = 'U' or 'u'   Only the upper triangular part of A
030: *                                  is to be referenced.
031: *
032: *              UPLO = 'L' or 'l'   Only the lower triangular part of A
033: *                                  is to be referenced.
034: *
035: *           Unchanged on exit.
036: *
037: *  N      - INTEGER.
038: *           On entry, N specifies the order of the matrix A.
039: *           N must be at least zero.
040: *           Unchanged on exit.
041: *
042: *  ALPHA  - DOUBLE PRECISION.
043: *           On entry, ALPHA specifies the scalar alpha.
044: *           Unchanged on exit.
045: *
046: *  X      - DOUBLE PRECISION array of dimension at least
047: *           ( 1 + ( n - 1 )*abs( INCX ) ).
048: *           Before entry, the incremented array X must contain the n
049: *           element vector x.
050: *           Unchanged on exit.
051: *
052: *  INCX   - INTEGER.
053: *           On entry, INCX specifies the increment for the elements of
054: *           X. INCX must not be zero.
055: *           Unchanged on exit.
056: *
057: *  Y      - DOUBLE PRECISION array of dimension at least
058: *           ( 1 + ( n - 1 )*abs( INCY ) ).
059: *           Before entry, the incremented array Y must contain the n
060: *           element vector y.
061: *           Unchanged on exit.
062: *
063: *  INCY   - INTEGER.
064: *           On entry, INCY specifies the increment for the elements of
065: *           Y. INCY must not be zero.
066: *           Unchanged on exit.
067: *
068: *  A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
069: *           Before entry with  UPLO = 'U' or 'u', the leading n by n
070: *           upper triangular part of the array A must contain the upper
071: *           triangular part of the symmetric matrix and the strictly
072: *           lower triangular part of A is not referenced. On exit, the
073: *           upper triangular part of the array A is overwritten by the
074: *           upper triangular part of the updated matrix.
075: *           Before entry with UPLO = 'L' or 'l', the leading n by n
076: *           lower triangular part of the array A must contain the lower
077: *           triangular part of the symmetric matrix and the strictly
078: *           upper triangular part of A is not referenced. On exit, the
079: *           lower triangular part of the array A is overwritten by the
080: *           lower triangular part of the updated matrix.
081: *
082: *  LDA    - INTEGER.
083: *           On entry, LDA specifies the first dimension of A as declared
084: *           in the calling (sub) program. LDA must be at least
085: *           max( 1, n ).
086: *           Unchanged on exit.
087: *
088: *
089: *  Level 2 Blas routine.
090: *
091: *  -- Written on 22-October-1986.
092: *     Jack Dongarra, Argonne National Lab.
093: *     Jeremy Du Croz, Nag Central Office.
094: *     Sven Hammarling, Nag Central Office.
095: *     Richard Hanson, Sandia National Labs.
096: *
097: *
098: *     .. Parameters ..
099:       DOUBLE PRECISION ZERO
100:       PARAMETER (ZERO=0.0D+0)
101: *     ..
102: *     .. Local Scalars ..
103:       DOUBLE PRECISION TEMP1,TEMP2
104:       INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY
105: *     ..
106: *     .. External Functions ..
107:       LOGICAL LSAME
108:       EXTERNAL LSAME
109: *     ..
110: *     .. External Subroutines ..
111:       EXTERNAL XERBLA
112: *     ..
113: *     .. Intrinsic Functions ..
114:       INTRINSIC MAX
115: *     ..
116: *
117: *     Test the input parameters.
118: *
119:       INFO = 0
120:       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
121:           INFO = 1
122:       ELSE IF (N.LT.0) THEN
123:           INFO = 2
124:       ELSE IF (INCX.EQ.0) THEN
125:           INFO = 5
126:       ELSE IF (INCY.EQ.0) THEN
127:           INFO = 7
128:       ELSE IF (LDA.LT.MAX(1,N)) THEN
129:           INFO = 9
130:       END IF
131:       IF (INFO.NE.0) THEN
132:           CALL XERBLA('DSYR2 ',INFO)
133:           RETURN
134:       END IF
135: *
136: *     Quick return if possible.
137: *
138:       IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
139: *
140: *     Set up the start points in X and Y if the increments are not both
141: *     unity.
142: *
143:       IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN
144:           IF (INCX.GT.0) THEN
145:               KX = 1
146:           ELSE
147:               KX = 1 - (N-1)*INCX
148:           END IF
149:           IF (INCY.GT.0) THEN
150:               KY = 1
151:           ELSE
152:               KY = 1 - (N-1)*INCY
153:           END IF
154:           JX = KX
155:           JY = KY
156:       END IF
157: *
158: *     Start the operations. In this version the elements of A are
159: *     accessed sequentially with one pass through the triangular part
160: *     of A.
161: *
162:       IF (LSAME(UPLO,'U')) THEN
163: *
164: *        Form  A  when A is stored in the upper triangle.
165: *
166:           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
167:               DO 20 J = 1,N
168:                   IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
169:                       TEMP1 = ALPHA*Y(J)
170:                       TEMP2 = ALPHA*X(J)
171:                       DO 10 I = 1,J
172:                           A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2
173:    10                 CONTINUE
174:                   END IF
175:    20         CONTINUE
176:           ELSE
177:               DO 40 J = 1,N
178:                   IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
179:                       TEMP1 = ALPHA*Y(JY)
180:                       TEMP2 = ALPHA*X(JX)
181:                       IX = KX
182:                       IY = KY
183:                       DO 30 I = 1,J
184:                           A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2
185:                           IX = IX + INCX
186:                           IY = IY + INCY
187:    30                 CONTINUE
188:                   END IF
189:                   JX = JX + INCX
190:                   JY = JY + INCY
191:    40         CONTINUE
192:           END IF
193:       ELSE
194: *
195: *        Form  A  when A is stored in the lower triangle.
196: *
197:           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
198:               DO 60 J = 1,N
199:                   IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
200:                       TEMP1 = ALPHA*Y(J)
201:                       TEMP2 = ALPHA*X(J)
202:                       DO 50 I = J,N
203:                           A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2
204:    50                 CONTINUE
205:                   END IF
206:    60         CONTINUE
207:           ELSE
208:               DO 80 J = 1,N
209:                   IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
210:                       TEMP1 = ALPHA*Y(JY)
211:                       TEMP2 = ALPHA*X(JX)
212:                       IX = JX
213:                       IY = JY
214:                       DO 70 I = J,N
215:                           A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2
216:                           IX = IX + INCX
217:                           IY = IY + INCY
218:    70                 CONTINUE
219:                   END IF
220:                   JX = JX + INCX
221:                   JY = JY + INCY
222:    80         CONTINUE
223:           END IF
224:       END IF
225: *
226:       RETURN
227: *
228: *     End of DSYR2 .
229: *
230:       END
231: