001:       SUBROUTINE CGGGLM( N, M, P, A, LDA, B, LDB, D, X, Y, WORK, LWORK,
002:      $                   INFO )
003: *
004: *  -- LAPACK driver routine (version 3.2) --
005: *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
006: *     November 2006
007: *
008: *     .. Scalar Arguments ..
009:       INTEGER            INFO, LDA, LDB, LWORK, M, N, P
010: *     ..
011: *     .. Array Arguments ..
012:       COMPLEX            A( LDA, * ), B( LDB, * ), D( * ), WORK( * ),
013:      $                   X( * ), Y( * )
014: *     ..
015: *
016: *  Purpose
017: *  =======
018: *
019: *  CGGGLM solves a general Gauss-Markov linear model (GLM) problem:
020: *
021: *          minimize || y ||_2   subject to   d = A*x + B*y
022: *              x
023: *
024: *  where A is an N-by-M matrix, B is an N-by-P matrix, and d is a
025: *  given N-vector. It is assumed that M <= N <= M+P, and
026: *
027: *             rank(A) = M    and    rank( A B ) = N.
028: *
029: *  Under these assumptions, the constrained equation is always
030: *  consistent, and there is a unique solution x and a minimal 2-norm
031: *  solution y, which is obtained using a generalized QR factorization
032: *  of the matrices (A, B) given by
033: *
034: *     A = Q*(R),   B = Q*T*Z.
035: *           (0)
036: *
037: *  In particular, if matrix B is square nonsingular, then the problem
038: *  GLM is equivalent to the following weighted linear least squares
039: *  problem
040: *
041: *               minimize || inv(B)*(d-A*x) ||_2
042: *                   x
043: *
044: *  where inv(B) denotes the inverse of B.
045: *
046: *  Arguments
047: *  =========
048: *
049: *  N       (input) INTEGER
050: *          The number of rows of the matrices A and B.  N >= 0.
051: *
052: *  M       (input) INTEGER
053: *          The number of columns of the matrix A.  0 <= M <= N.
054: *
055: *  P       (input) INTEGER
056: *          The number of columns of the matrix B.  P >= N-M.
057: *
058: *  A       (input/output) COMPLEX array, dimension (LDA,M)
059: *          On entry, the N-by-M matrix A.
060: *          On exit, the upper triangular part of the array A contains
061: *          the M-by-M upper triangular matrix R.
062: *
063: *  LDA     (input) INTEGER
064: *          The leading dimension of the array A. LDA >= max(1,N).
065: *
066: *  B       (input/output) COMPLEX array, dimension (LDB,P)
067: *          On entry, the N-by-P matrix B.
068: *          On exit, if N <= P, the upper triangle of the subarray
069: *          B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T;
070: *          if N > P, the elements on and above the (N-P)th subdiagonal
071: *          contain the N-by-P upper trapezoidal matrix T.
072: *
073: *  LDB     (input) INTEGER
074: *          The leading dimension of the array B. LDB >= max(1,N).
075: *
076: *  D       (input/output) COMPLEX array, dimension (N)
077: *          On entry, D is the left hand side of the GLM equation.
078: *          On exit, D is destroyed.
079: *
080: *  X       (output) COMPLEX array, dimension (M)
081: *  Y       (output) COMPLEX array, dimension (P)
082: *          On exit, X and Y are the solutions of the GLM problem.
083: *
084: *  WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))
085: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
086: *
087: *  LWORK   (input) INTEGER
088: *          The dimension of the array WORK. LWORK >= max(1,N+M+P).
089: *          For optimum performance, LWORK >= M+min(N,P)+max(N,P)*NB,
090: *          where NB is an upper bound for the optimal blocksizes for
091: *          CGEQRF, CGERQF, CUNMQR and CUNMRQ.
092: *
093: *          If LWORK = -1, then a workspace query is assumed; the routine
094: *          only calculates the optimal size of the WORK array, returns
095: *          this value as the first entry of the WORK array, and no error
096: *          message related to LWORK is issued by XERBLA.
097: *
098: *  INFO    (output) INTEGER
099: *          = 0:  successful exit.
100: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
101: *          = 1:  the upper triangular factor R associated with A in the
102: *                generalized QR factorization of the pair (A, B) is
103: *                singular, so that rank(A) < M; the least squares
104: *                solution could not be computed.
105: *          = 2:  the bottom (N-M) by (N-M) part of the upper trapezoidal
106: *                factor T associated with B in the generalized QR
107: *                factorization of the pair (A, B) is singular, so that
108: *                rank( A B ) < N; the least squares solution could not
109: *                be computed.
110: *
111: *  ===================================================================
112: *
113: *     .. Parameters ..
114:       COMPLEX            CZERO, CONE
115:       PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
116:      $                   CONE = ( 1.0E+0, 0.0E+0 ) )
117: *     ..
118: *     .. Local Scalars ..
119:       LOGICAL            LQUERY
120:       INTEGER            I, LOPT, LWKMIN, LWKOPT, NB, NB1, NB2, NB3,
121:      $                   NB4, NP
122: *     ..
123: *     .. External Subroutines ..
124:       EXTERNAL           CCOPY, CGEMV, CGGQRF, CTRTRS, CUNMQR, CUNMRQ,
125:      $                   XERBLA
126: *     ..
127: *     .. External Functions ..
128:       INTEGER            ILAENV
129:       EXTERNAL           ILAENV 
130: *     ..
131: *     .. Intrinsic Functions ..
132:       INTRINSIC          INT, MAX, MIN
133: *     ..
134: *     .. Executable Statements ..
135: *
136: *     Test the input parameters
137: *
138:       INFO = 0
139:       NP = MIN( N, P )
140:       LQUERY = ( LWORK.EQ.-1 )
141:       IF( N.LT.0 ) THEN
142:          INFO = -1
143:       ELSE IF( M.LT.0 .OR. M.GT.N ) THEN
144:          INFO = -2
145:       ELSE IF( P.LT.0 .OR. P.LT.N-M ) THEN
146:          INFO = -3
147:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
148:          INFO = -5
149:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
150:          INFO = -7
151:       END IF
152: *
153: *     Calculate workspace
154: *
155:       IF( INFO.EQ.0) THEN
156:          IF( N.EQ.0 ) THEN
157:             LWKMIN = 1
158:             LWKOPT = 1
159:          ELSE
160:             NB1 = ILAENV( 1, 'CGEQRF', ' ', N, M, -1, -1 )
161:             NB2 = ILAENV( 1, 'CGERQF', ' ', N, M, -1, -1 )
162:             NB3 = ILAENV( 1, 'CUNMQR', ' ', N, M, P, -1 )
163:             NB4 = ILAENV( 1, 'CUNMRQ', ' ', N, M, P, -1 )
164:             NB = MAX( NB1, NB2, NB3, NB4 )
165:             LWKMIN = M + N + P
166:             LWKOPT = M + NP + MAX( N, P )*NB
167:          END IF
168:          WORK( 1 ) = LWKOPT
169: *
170:          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
171:             INFO = -12
172:          END IF
173:       END IF
174: *
175:       IF( INFO.NE.0 ) THEN
176:          CALL XERBLA( 'CGGGLM', -INFO )
177:          RETURN
178:       ELSE IF( LQUERY ) THEN
179:          RETURN
180:       END IF
181: *
182: *     Quick return if possible
183: *
184:       IF( N.EQ.0 )
185:      $   RETURN
186: *
187: *     Compute the GQR factorization of matrices A and B:
188: *
189: *            Q'*A = ( R11 ) M,    Q'*B*Z' = ( T11   T12 ) M
190: *                   (  0  ) N-M             (  0    T22 ) N-M
191: *                      M                     M+P-N  N-M
192: *
193: *     where R11 and T22 are upper triangular, and Q and Z are
194: *     unitary.
195: *
196:       CALL CGGQRF( N, M, P, A, LDA, WORK, B, LDB, WORK( M+1 ),
197:      $             WORK( M+NP+1 ), LWORK-M-NP, INFO )
198:       LOPT = WORK( M+NP+1 )
199: *
200: *     Update left-hand-side vector d = Q'*d = ( d1 ) M
201: *                                             ( d2 ) N-M
202: *
203:       CALL CUNMQR( 'Left', 'Conjugate transpose', N, 1, M, A, LDA, WORK,
204:      $             D, MAX( 1, N ), WORK( M+NP+1 ), LWORK-M-NP, INFO )
205:       LOPT = MAX( LOPT, INT( WORK( M+NP+1 ) ) )
206: *
207: *     Solve T22*y2 = d2 for y2
208: *
209:       IF( N.GT.M ) THEN
210:          CALL CTRTRS( 'Upper', 'No transpose', 'Non unit', N-M, 1,
211:      $                B( M+1, M+P-N+1 ), LDB, D( M+1 ), N-M, INFO )
212: *
213:          IF( INFO.GT.0 ) THEN
214:             INFO = 1
215:             RETURN
216:          END IF
217: *
218:          CALL CCOPY( N-M, D( M+1 ), 1, Y( M+P-N+1 ), 1 )
219:       END IF
220: *
221: *     Set y1 = 0
222: *
223:       DO 10 I = 1, M + P - N
224:          Y( I ) = CZERO
225:    10 CONTINUE
226: *
227: *     Update d1 = d1 - T12*y2
228: *
229:       CALL CGEMV( 'No transpose', M, N-M, -CONE, B( 1, M+P-N+1 ), LDB,
230:      $            Y( M+P-N+1 ), 1, CONE, D, 1 )
231: *
232: *     Solve triangular system: R11*x = d1
233: *
234:       IF( M.GT.0 ) THEN
235:          CALL CTRTRS( 'Upper', 'No Transpose', 'Non unit', M, 1, A, LDA,
236:      $                D, M, INFO )
237: *
238:          IF( INFO.GT.0 ) THEN
239:             INFO = 2
240:             RETURN
241:          END IF
242: *
243: *        Copy D to X
244: *
245:          CALL CCOPY( M, D, 1, X, 1 )
246:       END IF
247: *
248: *     Backward transformation y = Z'*y
249: *
250:       CALL CUNMRQ( 'Left', 'Conjugate transpose', P, 1, NP,
251:      $             B( MAX( 1, N-P+1 ), 1 ), LDB, WORK( M+1 ), Y,
252:      $             MAX( 1, P ), WORK( M+NP+1 ), LWORK-M-NP, INFO )
253:       WORK( 1 ) = M + NP + MAX( LOPT, INT( WORK( M+NP+1 ) ) )
254: *
255:       RETURN
256: *
257: *     End of CGGGLM
258: *
259:       END
260: