SUBROUTINE STREXC( COMPQ, N, T, LDT, Q, LDQ, IFST, ILST, WORK,
     $                   INFO )
*
*  -- LAPACK routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          COMPQ
      INTEGER            IFST, ILST, INFO, LDQ, LDT, N
*     ..
*     .. Array Arguments ..
      REAL               Q( LDQ, * ), T( LDT, * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  STREXC reorders the real Schur factorization of a real matrix
*  A = Q*T*Q**T, so that the diagonal block of T with row index IFST is
*  moved to row ILST.
*
*  The real Schur form T is reordered by an orthogonal similarity
*  transformation Z**T*T*Z, and optionally the matrix Q of Schur vectors
*  is updated by postmultiplying it with Z.
*
*  T must be in Schur canonical form (as returned by SHSEQR), that is,
*  block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each
*  2-by-2 diagonal block has its diagonal elements equal and its
*  off-diagonal elements of opposite sign.
*
*  Arguments
*  =========
*
*  COMPQ   (input) CHARACTER*1
*          = 'V':  update the matrix Q of Schur vectors;
*          = 'N':  do not update Q.
*
*  N       (input) INTEGER
*          The order of the matrix T. N >= 0.
*
*  T       (input/output) REAL array, dimension (LDT,N)
*          On entry, the upper quasi-triangular matrix T, in Schur
*          Schur canonical form.
*          On exit, the reordered upper quasi-triangular matrix, again
*          in Schur canonical form.
*
*  LDT     (input) INTEGER
*          The leading dimension of the array T. LDT >= max(1,N).
*
*  Q       (input/output) REAL array, dimension (LDQ,N)
*          On entry, if COMPQ = 'V', the matrix Q of Schur vectors.
*          On exit, if COMPQ = 'V', Q has been postmultiplied by the
*          orthogonal transformation matrix Z which reorders T.
*          If COMPQ = 'N', Q is not referenced.
*
*  LDQ     (input) INTEGER
*          The leading dimension of the array Q.  LDQ >= max(1,N).
*
*  IFST    (input/output) INTEGER
*  ILST    (input/output) INTEGER
*          Specify the reordering of the diagonal blocks of T.
*          The block with row index IFST is moved to row ILST, by a
*          sequence of transpositions between adjacent blocks.
*          On exit, if IFST pointed on entry to the second row of a
*          2-by-2 block, it is changed to point to the first row; ILST
*          always points to the first row of the block in its final
*          position (which may differ from its input value by +1 or -1).
*          1 <= IFST <= N; 1 <= ILST <= N.
*
*  WORK    (workspace) REAL array, dimension (N)
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*          = 1:  two adjacent blocks were too close to swap (the problem
*                is very ill-conditioned); T may have been partially
*                reordered, and ILST points to the first row of the
*                current position of the block being moved.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO
      PARAMETER          ( ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            WANTQ
      INTEGER            HERE, NBF, NBL, NBNEXT
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           SLAEXC, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Decode and test the input arguments.
*
      INFO = 0
      WANTQ = LSAME( COMPQ, 'V' )
      IF( .NOT.WANTQ .AND. .NOT.LSAME( COMPQ, 'N' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
         INFO = -4
      ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.MAX( 1, N ) ) ) THEN
         INFO = -6
      ELSE IF( IFST.LT.1 .OR. IFST.GT.N ) THEN
         INFO = -7
      ELSE IF( ILST.LT.1 .OR. ILST.GT.N ) THEN
         INFO = -8
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'STREXC', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.LE.1 )
     $   RETURN
*
*     Determine the first row of specified block
*     and find out it is 1 by 1 or 2 by 2.
*
      IF( IFST.GT.1 ) THEN
         IF( T( IFST, IFST-1 ).NE.ZERO )
     $      IFST = IFST - 1
      END IF
      NBF = 1
      IF( IFST.LT.N ) THEN
         IF( T( IFST+1, IFST ).NE.ZERO )
     $      NBF = 2
      END IF
*
*     Determine the first row of the final block
*     and find out it is 1 by 1 or 2 by 2.
*
      IF( ILST.GT.1 ) THEN
         IF( T( ILST, ILST-1 ).NE.ZERO )
     $      ILST = ILST - 1
      END IF
      NBL = 1
      IF( ILST.LT.N ) THEN
         IF( T( ILST+1, ILST ).NE.ZERO )
     $      NBL = 2
      END IF
*
      IF( IFST.EQ.ILST )
     $   RETURN
*
      IF( IFST.LT.ILST ) THEN
*
*        Update ILST
*
         IF( NBF.EQ.2 .AND. NBL.EQ.1 )
     $      ILST = ILST - 1
         IF( NBF.EQ.1 .AND. NBL.EQ.2 )
     $      ILST = ILST + 1
*
         HERE = IFST
*
   10    CONTINUE
*
*        Swap block with next one below
*
         IF( NBF.EQ.1 .OR. NBF.EQ.2 ) THEN
*
*           Current block either 1 by 1 or 2 by 2
*
            NBNEXT = 1
            IF( HERE+NBF+1.LE.N ) THEN
               IF( T( HERE+NBF+1, HERE+NBF ).NE.ZERO )
     $            NBNEXT = 2
            END IF
            CALL SLAEXC( WANTQ, N, T, LDT, Q, LDQ, HERE, NBF, NBNEXT,
     $                   WORK, INFO )
            IF( INFO.NE.0 ) THEN
               ILST = HERE
               RETURN
            END IF
            HERE = HERE + NBNEXT
*
*           Test if 2 by 2 block breaks into two 1 by 1 blocks
*
            IF( NBF.EQ.2 ) THEN
               IF( T( HERE+1, HERE ).EQ.ZERO )
     $            NBF = 3
            END IF
*
         ELSE
*
*           Current block consists of two 1 by 1 blocks each of which
*           must be swapped individually
*
            NBNEXT = 1
            IF( HERE+3.LE.N ) THEN
               IF( T( HERE+3, HERE+2 ).NE.ZERO )
     $            NBNEXT = 2
            END IF
            CALL SLAEXC( WANTQ, N, T, LDT, Q, LDQ, HERE+1, 1, NBNEXT,
     $                   WORK, INFO )
            IF( INFO.NE.0 ) THEN
               ILST = HERE
               RETURN
            END IF
            IF( NBNEXT.EQ.1 ) THEN
*
*              Swap two 1 by 1 blocks, no problems possible
*
               CALL SLAEXC( WANTQ, N, T, LDT, Q, LDQ, HERE, 1, NBNEXT,
     $                      WORK, INFO )
               HERE = HERE + 1
            ELSE
*
*              Recompute NBNEXT in case 2 by 2 split
*
               IF( T( HERE+2, HERE+1 ).EQ.ZERO )
     $            NBNEXT = 1
               IF( NBNEXT.EQ.2 ) THEN
*
*                 2 by 2 Block did not split
*
                  CALL SLAEXC( WANTQ, N, T, LDT, Q, LDQ, HERE, 1,
     $                         NBNEXT, WORK, INFO )
                  IF( INFO.NE.0 ) THEN
                     ILST = HERE
                     RETURN
                  END IF
                  HERE = HERE + 2
               ELSE
*
*                 2 by 2 Block did split
*
                  CALL SLAEXC( WANTQ, N, T, LDT, Q, LDQ, HERE, 1, 1,
     $                         WORK, INFO )
                  CALL SLAEXC( WANTQ, N, T, LDT, Q, LDQ, HERE+1, 1, 1,
     $                         WORK, INFO )
                  HERE = HERE + 2
               END IF
            END IF
         END IF
         IF( HERE.LT.ILST )
     $      GO TO 10
*
      ELSE
*
         HERE = IFST
   20    CONTINUE
*
*        Swap block with next one above
*
         IF( NBF.EQ.1 .OR. NBF.EQ.2 ) THEN
*
*           Current block either 1 by 1 or 2 by 2
*
            NBNEXT = 1
            IF( HERE.GE.3 ) THEN
               IF( T( HERE-1, HERE-2 ).NE.ZERO )
     $            NBNEXT = 2
            END IF
            CALL SLAEXC( WANTQ, N, T, LDT, Q, LDQ, HERE-NBNEXT, NBNEXT,
     $                   NBF, WORK, INFO )
            IF( INFO.NE.0 ) THEN
               ILST = HERE
               RETURN
            END IF
            HERE = HERE - NBNEXT
*
*           Test if 2 by 2 block breaks into two 1 by 1 blocks
*
            IF( NBF.EQ.2 ) THEN
               IF( T( HERE+1, HERE ).EQ.ZERO )
     $            NBF = 3
            END IF
*
         ELSE
*
*           Current block consists of two 1 by 1 blocks each of which
*           must be swapped individually
*
            NBNEXT = 1
            IF( HERE.GE.3 ) THEN
               IF( T( HERE-1, HERE-2 ).NE.ZERO )
     $            NBNEXT = 2
            END IF
            CALL SLAEXC( WANTQ, N, T, LDT, Q, LDQ, HERE-NBNEXT, NBNEXT,
     $                   1, WORK, INFO )
            IF( INFO.NE.0 ) THEN
               ILST = HERE
               RETURN
            END IF
            IF( NBNEXT.EQ.1 ) THEN
*
*              Swap two 1 by 1 blocks, no problems possible
*
               CALL SLAEXC( WANTQ, N, T, LDT, Q, LDQ, HERE, NBNEXT, 1,
     $                      WORK, INFO )
               HERE = HERE - 1
            ELSE
*
*              Recompute NBNEXT in case 2 by 2 split
*
               IF( T( HERE, HERE-1 ).EQ.ZERO )
     $            NBNEXT = 1
               IF( NBNEXT.EQ.2 ) THEN
*
*                 2 by 2 Block did not split
*
                  CALL SLAEXC( WANTQ, N, T, LDT, Q, LDQ, HERE-1, 2, 1,
     $                         WORK, INFO )
                  IF( INFO.NE.0 ) THEN
                     ILST = HERE
                     RETURN
                  END IF
                  HERE = HERE - 2
               ELSE
*
*                 2 by 2 Block did split
*
                  CALL SLAEXC( WANTQ, N, T, LDT, Q, LDQ, HERE, 1, 1,
     $                         WORK, INFO )
                  CALL SLAEXC( WANTQ, N, T, LDT, Q, LDQ, HERE-1, 1, 1,
     $                         WORK, INFO )
                  HERE = HERE - 2
               END IF
            END IF
         END IF
         IF( HERE.GT.ILST )
     $      GO TO 20
      END IF
      ILST = HERE
*
      RETURN
*
*     End of STREXC
*
      END