```      SUBROUTINE DORGBR( VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
*
*  -- LAPACK routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
CHARACTER          VECT
INTEGER            INFO, K, LDA, LWORK, M, N
*     ..
*     .. Array Arguments ..
DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  DORGBR generates one of the real orthogonal matrices Q or P**T
*  determined by DGEBRD when reducing a real matrix A to bidiagonal
*  form: A = Q * B * P**T.  Q and P**T are defined as products of
*  elementary reflectors H(i) or G(i) respectively.
*
*  If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q
*  is of order M:
*  if m >= k, Q = H(1) H(2) . . . H(k) and DORGBR returns the first n
*  columns of Q, where m >= n >= k;
*  if m < k, Q = H(1) H(2) . . . H(m-1) and DORGBR returns Q as an
*  M-by-M matrix.
*
*  If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**T
*  is of order N:
*  if k < n, P**T = G(k) . . . G(2) G(1) and DORGBR returns the first m
*  rows of P**T, where n >= m >= k;
*  if k >= n, P**T = G(n-1) . . . G(2) G(1) and DORGBR returns P**T as
*  an N-by-N matrix.
*
*  Arguments
*  =========
*
*  VECT    (input) CHARACTER*1
*          Specifies whether the matrix Q or the matrix P**T is
*          required, as defined in the transformation applied by DGEBRD:
*          = 'Q':  generate Q;
*          = 'P':  generate P**T.
*
*  M       (input) INTEGER
*          The number of rows of the matrix Q or P**T to be returned.
*          M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix Q or P**T to be returned.
*          N >= 0.
*          If VECT = 'Q', M >= N >= min(M,K);
*          if VECT = 'P', N >= M >= min(N,K).
*
*  K       (input) INTEGER
*          If VECT = 'Q', the number of columns in the original M-by-K
*          matrix reduced by DGEBRD.
*          If VECT = 'P', the number of rows in the original K-by-N
*          matrix reduced by DGEBRD.
*          K >= 0.
*
*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
*          On entry, the vectors which define the elementary reflectors,
*          as returned by DGEBRD.
*          On exit, the M-by-N matrix Q or P**T.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A. LDA >= max(1,M).
*
*  TAU     (input) DOUBLE PRECISION array, dimension
*                                (min(M,K)) if VECT = 'Q'
*                                (min(N,K)) if VECT = 'P'
*          TAU(i) must contain the scalar factor of the elementary
*          reflector H(i) or G(i), which determines Q or P**T, as
*          returned by DGEBRD in its array argument TAUQ or TAUP.
*
*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK. LWORK >= max(1,min(M,N)).
*          For optimum performance LWORK >= min(M,N)*NB, where NB
*          is the optimal blocksize.
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array, and no error
*          message related to LWORK is issued by XERBLA.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*
*  =====================================================================
*
*     .. Parameters ..
DOUBLE PRECISION   ZERO, ONE
PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
LOGICAL            LQUERY, WANTQ
INTEGER            I, IINFO, J, LWKOPT, MN, NB
*     ..
*     .. External Functions ..
LOGICAL            LSAME
INTEGER            ILAENV
EXTERNAL           LSAME, ILAENV
*     ..
*     .. External Subroutines ..
EXTERNAL           DORGLQ, DORGQR, XERBLA
*     ..
*     .. Intrinsic Functions ..
INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
INFO = 0
WANTQ = LSAME( VECT, 'Q' )
MN = MIN( M, N )
LQUERY = ( LWORK.EQ.-1 )
IF( .NOT.WANTQ .AND. .NOT.LSAME( VECT, 'P' ) ) THEN
INFO = -1
ELSE IF( M.LT.0 ) THEN
INFO = -2
ELSE IF( N.LT.0 .OR. ( WANTQ .AND. ( N.GT.M .OR. N.LT.MIN( M,
\$         K ) ) ) .OR. ( .NOT.WANTQ .AND. ( M.GT.N .OR. M.LT.
\$         MIN( N, K ) ) ) ) THEN
INFO = -3
ELSE IF( K.LT.0 ) THEN
INFO = -4
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -6
ELSE IF( LWORK.LT.MAX( 1, MN ) .AND. .NOT.LQUERY ) THEN
INFO = -9
END IF
*
IF( INFO.EQ.0 ) THEN
IF( WANTQ ) THEN
NB = ILAENV( 1, 'DORGQR', ' ', M, N, K, -1 )
ELSE
NB = ILAENV( 1, 'DORGLQ', ' ', M, N, K, -1 )
END IF
LWKOPT = MAX( 1, MN )*NB
WORK( 1 ) = LWKOPT
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DORGBR', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
*     Quick return if possible
*
IF( M.EQ.0 .OR. N.EQ.0 ) THEN
WORK( 1 ) = 1
RETURN
END IF
*
IF( WANTQ ) THEN
*
*        Form Q, determined by a call to DGEBRD to reduce an m-by-k
*        matrix
*
IF( M.GE.K ) THEN
*
*           If m >= k, assume m >= n >= k
*
CALL DORGQR( M, N, K, A, LDA, TAU, WORK, LWORK, IINFO )
*
ELSE
*
*           If m < k, assume m = n
*
*           Shift the vectors which define the elementary reflectors one
*           column to the right, and set the first row and column of Q
*           to those of the unit matrix
*
DO 20 J = M, 2, -1
A( 1, J ) = ZERO
DO 10 I = J + 1, M
A( I, J ) = A( I, J-1 )
10          CONTINUE
20       CONTINUE
A( 1, 1 ) = ONE
DO 30 I = 2, M
A( I, 1 ) = ZERO
30       CONTINUE
IF( M.GT.1 ) THEN
*
*              Form Q(2:m,2:m)
*
CALL DORGQR( M-1, M-1, M-1, A( 2, 2 ), LDA, TAU, WORK,
\$                      LWORK, IINFO )
END IF
END IF
ELSE
*
*        Form P', determined by a call to DGEBRD to reduce a k-by-n
*        matrix
*
IF( K.LT.N ) THEN
*
*           If k < n, assume k <= m <= n
*
CALL DORGLQ( M, N, K, A, LDA, TAU, WORK, LWORK, IINFO )
*
ELSE
*
*           If k >= n, assume m = n
*
*           Shift the vectors which define the elementary reflectors one
*           row downward, and set the first row and column of P' to
*           those of the unit matrix
*
A( 1, 1 ) = ONE
DO 40 I = 2, N
A( I, 1 ) = ZERO
40       CONTINUE
DO 60 J = 2, N
DO 50 I = J - 1, 2, -1
A( I, J ) = A( I-1, J )
50          CONTINUE
A( 1, J ) = ZERO
60       CONTINUE
IF( N.GT.1 ) THEN
*
*              Form P'(2:n,2:n)
*
CALL DORGLQ( N-1, N-1, N-1, A( 2, 2 ), LDA, TAU, WORK,
\$                      LWORK, IINFO )
END IF
END IF
END IF
WORK( 1 ) = LWKOPT
RETURN
*
*     End of DORGBR
*
END

```