```      SUBROUTINE DLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
*
*  -- LAPACK auxiliary routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
CHARACTER          DIRECT, STOREV
INTEGER            K, LDT, LDV, N
*     ..
*     .. Array Arguments ..
DOUBLE PRECISION   T( LDT, * ), TAU( * ), V( LDV, * )
*     ..
*
*  Purpose
*  =======
*
*  DLARFT forms the triangular factor T of a real block reflector H
*  of order n, which is defined as a product of k elementary reflectors.
*
*  If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
*
*  If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
*
*  If STOREV = 'C', the vector which defines the elementary reflector
*  H(i) is stored in the i-th column of the array V, and
*
*     H  =  I - V * T * V'
*
*  If STOREV = 'R', the vector which defines the elementary reflector
*  H(i) is stored in the i-th row of the array V, and
*
*     H  =  I - V' * T * V
*
*  Arguments
*  =========
*
*  DIRECT  (input) CHARACTER*1
*          Specifies the order in which the elementary reflectors are
*          multiplied to form the block reflector:
*          = 'F': H = H(1) H(2) . . . H(k) (Forward)
*          = 'B': H = H(k) . . . H(2) H(1) (Backward)
*
*  STOREV  (input) CHARACTER*1
*          Specifies how the vectors which define the elementary
*          = 'C': columnwise
*          = 'R': rowwise
*
*  N       (input) INTEGER
*          The order of the block reflector H. N >= 0.
*
*  K       (input) INTEGER
*          The order of the triangular factor T (= the number of
*          elementary reflectors). K >= 1.
*
*  V       (input/output) DOUBLE PRECISION array, dimension
*                               (LDV,K) if STOREV = 'C'
*                               (LDV,N) if STOREV = 'R'
*          The matrix V. See further details.
*
*  LDV     (input) INTEGER
*          The leading dimension of the array V.
*          If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
*
*  TAU     (input) DOUBLE PRECISION array, dimension (K)
*          TAU(i) must contain the scalar factor of the elementary
*          reflector H(i).
*
*  T       (output) DOUBLE PRECISION array, dimension (LDT,K)
*          The k by k triangular factor T of the block reflector.
*          If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
*          lower triangular. The rest of the array is not used.
*
*  LDT     (input) INTEGER
*          The leading dimension of the array T. LDT >= K.
*
*  Further Details
*  ===============
*
*  The shape of the matrix V and the storage of the vectors which define
*  the H(i) is best illustrated by the following example with n = 5 and
*  k = 3. The elements equal to 1 are not stored; the corresponding
*  array elements are modified but restored on exit. The rest of the
*  array is not used.
*
*  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R':
*
*               V = (  1       )                 V = (  1 v1 v1 v1 v1 )
*                   ( v1  1    )                     (     1 v2 v2 v2 )
*                   ( v1 v2  1 )                     (        1 v3 v3 )
*                   ( v1 v2 v3 )
*                   ( v1 v2 v3 )
*
*  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R':
*
*               V = ( v1 v2 v3 )                 V = ( v1 v1  1       )
*                   ( v1 v2 v3 )                     ( v2 v2 v2  1    )
*                   (  1 v2 v3 )                     ( v3 v3 v3 v3  1 )
*                   (     1 v3 )
*                   (        1 )
*
*  =====================================================================
*
*     .. Parameters ..
DOUBLE PRECISION   ONE, ZERO
PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
INTEGER            I, J
DOUBLE PRECISION   VII
*     ..
*     .. External Subroutines ..
EXTERNAL           DGEMV, DTRMV
*     ..
*     .. External Functions ..
LOGICAL            LSAME
EXTERNAL           LSAME
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
IF( N.EQ.0 )
\$   RETURN
*
IF( LSAME( DIRECT, 'F' ) ) THEN
DO 20 I = 1, K
IF( TAU( I ).EQ.ZERO ) THEN
*
*              H(i)  =  I
*
DO 10 J = 1, I
T( J, I ) = ZERO
10          CONTINUE
ELSE
*
*              general case
*
VII = V( I, I )
V( I, I ) = ONE
IF( LSAME( STOREV, 'C' ) ) THEN
*
*                 T(1:i-1,i) := - tau(i) * V(i:n,1:i-1)' * V(i:n,i)
*
CALL DGEMV( 'Transpose', N-I+1, I-1, -TAU( I ),
\$                        V( I, 1 ), LDV, V( I, I ), 1, ZERO,
\$                        T( 1, I ), 1 )
ELSE
*
*                 T(1:i-1,i) := - tau(i) * V(1:i-1,i:n) * V(i,i:n)'
*
CALL DGEMV( 'No transpose', I-1, N-I+1, -TAU( I ),
\$                        V( 1, I ), LDV, V( I, I ), LDV, ZERO,
\$                        T( 1, I ), 1 )
END IF
V( I, I ) = VII
*
*              T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i)
*
CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', I-1, T,
\$                     LDT, T( 1, I ), 1 )
T( I, I ) = TAU( I )
END IF
20    CONTINUE
ELSE
DO 40 I = K, 1, -1
IF( TAU( I ).EQ.ZERO ) THEN
*
*              H(i)  =  I
*
DO 30 J = I, K
T( J, I ) = ZERO
30          CONTINUE
ELSE
*
*              general case
*
IF( I.LT.K ) THEN
IF( LSAME( STOREV, 'C' ) ) THEN
VII = V( N-K+I, I )
V( N-K+I, I ) = ONE
*
*                    T(i+1:k,i) :=
*                            - tau(i) * V(1:n-k+i,i+1:k)' * V(1:n-k+i,i)
*
CALL DGEMV( 'Transpose', N-K+I, K-I, -TAU( I ),
\$                           V( 1, I+1 ), LDV, V( 1, I ), 1, ZERO,
\$                           T( I+1, I ), 1 )
V( N-K+I, I ) = VII
ELSE
VII = V( I, N-K+I )
V( I, N-K+I ) = ONE
*
*                    T(i+1:k,i) :=
*                            - tau(i) * V(i+1:k,1:n-k+i) * V(i,1:n-k+i)'
*
CALL DGEMV( 'No transpose', K-I, N-K+I, -TAU( I ),
\$                           V( I+1, 1 ), LDV, V( I, 1 ), LDV, ZERO,
\$                           T( I+1, I ), 1 )
V( I, N-K+I ) = VII
END IF
*
*                 T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i)
*
CALL DTRMV( 'Lower', 'No transpose', 'Non-unit', K-I,
\$                        T( I+1, I+1 ), LDT, T( I+1, I ), 1 )
END IF
T( I, I ) = TAU( I )
END IF
40    CONTINUE
END IF
RETURN
*
*     End of DLARFT
*
END

```