```      SUBROUTINE DLAED1( N, D, Q, LDQ, INDXQ, RHO, CUTPNT, WORK, IWORK,
\$                   INFO )
*
*  -- LAPACK routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
INTEGER            CUTPNT, INFO, LDQ, N
DOUBLE PRECISION   RHO
*     ..
*     .. Array Arguments ..
INTEGER            INDXQ( * ), IWORK( * )
DOUBLE PRECISION   D( * ), Q( LDQ, * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  DLAED1 computes the updated eigensystem of a diagonal
*  matrix after modification by a rank-one symmetric matrix.  This
*  routine is used only for the eigenproblem which requires all
*  eigenvalues and eigenvectors of a tridiagonal matrix.  DLAED7 handles
*  the case in which eigenvalues only or eigenvalues and eigenvectors
*  of a full symmetric matrix (which was reduced to tridiagonal form)
*  are desired.
*
*    T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out)
*
*     where Z = Q'u, u is a vector of length N with ones in the
*     CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.
*
*     The eigenvectors of the original matrix are stored in Q, and the
*     eigenvalues are in D.  The algorithm consists of three stages:
*
*        The first stage consists of deflating the size of the problem
*        when there are multiple eigenvalues or if there is a zero in
*        the Z vector.  For each such occurence the dimension of the
*        secular equation problem is reduced by one.  This stage is
*        performed by the routine DLAED2.
*
*        The second stage consists of calculating the updated
*        eigenvalues. This is done by finding the roots of the secular
*        equation via the routine DLAED4 (as called by DLAED3).
*        This routine also calculates the eigenvectors of the current
*        problem.
*
*        The final stage consists of computing the updated eigenvectors
*        directly using the updated eigenvalues.  The eigenvectors for
*        the current problem are multiplied with the eigenvectors from
*        the overall problem.
*
*  Arguments
*  =========
*
*  N      (input) INTEGER
*         The dimension of the symmetric tridiagonal matrix.  N >= 0.
*
*  D      (input/output) DOUBLE PRECISION array, dimension (N)
*         On entry, the eigenvalues of the rank-1-perturbed matrix.
*         On exit, the eigenvalues of the repaired matrix.
*
*  Q      (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
*         On entry, the eigenvectors of the rank-1-perturbed matrix.
*         On exit, the eigenvectors of the repaired tridiagonal matrix.
*
*  LDQ    (input) INTEGER
*         The leading dimension of the array Q.  LDQ >= max(1,N).
*
*  INDXQ  (input/output) INTEGER array, dimension (N)
*         On entry, the permutation which separately sorts the two
*         subproblems in D into ascending order.
*         On exit, the permutation which will reintegrate the
*         subproblems back into sorted order,
*         i.e. D( INDXQ( I = 1, N ) ) will be in ascending order.
*
*  RHO    (input) DOUBLE PRECISION
*         The subdiagonal entry used to create the rank-1 modification.
*
*  CUTPNT (input) INTEGER
*         The location of the last eigenvalue in the leading sub-matrix.
*         min(1,N) <= CUTPNT <= N/2.
*
*  WORK   (workspace) DOUBLE PRECISION array, dimension (4*N + N**2)
*
*  IWORK  (workspace) INTEGER array, dimension (4*N)
*
*  INFO   (output) INTEGER
*          = 0:  successful exit.
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*          > 0:  if INFO = 1, an eigenvalue did not converge
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Jeff Rutter, Computer Science Division, University of California
*     at Berkeley, USA
*  Modified by Francoise Tisseur, University of Tennessee.
*
*  =====================================================================
*
*     .. Local Scalars ..
INTEGER            COLTYP, I, IDLMDA, INDX, INDXC, INDXP, IQ2, IS,
\$                   IW, IZ, K, N1, N2, ZPP1
*     ..
*     .. External Subroutines ..
EXTERNAL           DCOPY, DLAED2, DLAED3, DLAMRG, XERBLA
*     ..
*     .. Intrinsic Functions ..
INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
INFO = 0
*
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
INFO = -4
ELSE IF( MIN( 1, N / 2 ).GT.CUTPNT .OR. ( N / 2 ).LT.CUTPNT ) THEN
INFO = -7
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DLAED1', -INFO )
RETURN
END IF
*
*     Quick return if possible
*
IF( N.EQ.0 )
\$   RETURN
*
*     The following values are integer pointers which indicate
*     the portion of the workspace
*     used by a particular array in DLAED2 and DLAED3.
*
IZ = 1
IDLMDA = IZ + N
IW = IDLMDA + N
IQ2 = IW + N
*
INDX = 1
INDXC = INDX + N
COLTYP = INDXC + N
INDXP = COLTYP + N
*
*
*     Form the z-vector which consists of the last row of Q_1 and the
*     first row of Q_2.
*
CALL DCOPY( CUTPNT, Q( CUTPNT, 1 ), LDQ, WORK( IZ ), 1 )
ZPP1 = CUTPNT + 1
CALL DCOPY( N-CUTPNT, Q( ZPP1, ZPP1 ), LDQ, WORK( IZ+CUTPNT ), 1 )
*
*     Deflate eigenvalues.
*
CALL DLAED2( K, N, CUTPNT, D, Q, LDQ, INDXQ, RHO, WORK( IZ ),
\$             WORK( IDLMDA ), WORK( IW ), WORK( IQ2 ),
\$             IWORK( INDX ), IWORK( INDXC ), IWORK( INDXP ),
\$             IWORK( COLTYP ), INFO )
*
IF( INFO.NE.0 )
\$   GO TO 20
*
*     Solve Secular Equation.
*
IF( K.NE.0 ) THEN
IS = ( IWORK( COLTYP )+IWORK( COLTYP+1 ) )*CUTPNT +
\$        ( IWORK( COLTYP+1 )+IWORK( COLTYP+2 ) )*( N-CUTPNT ) + IQ2
CALL DLAED3( K, N, CUTPNT, D, Q, LDQ, RHO, WORK( IDLMDA ),
\$                WORK( IQ2 ), IWORK( INDXC ), IWORK( COLTYP ),
\$                WORK( IW ), WORK( IS ), INFO )
IF( INFO.NE.0 )
\$      GO TO 20
*
*     Prepare the INDXQ sorting permutation.
*
N1 = K
N2 = N - K
CALL DLAMRG( N1, N2, D, 1, -1, INDXQ )
ELSE
DO 10 I = 1, N
INDXQ( I ) = I
10    CONTINUE
END IF
*
20 CONTINUE
RETURN
*
*     End of DLAED1
*
END

```