```      REAL             FUNCTION CLANGT( NORM, N, DL, D, DU )
*
*  -- LAPACK auxiliary routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
CHARACTER          NORM
INTEGER            N
*     ..
*     .. Array Arguments ..
COMPLEX            D( * ), DL( * ), DU( * )
*     ..
*
*  Purpose
*  =======
*
*  CLANGT  returns the value of the one norm,  or the Frobenius norm, or
*  the  infinity norm,  or the  element of  largest absolute value  of a
*  complex tridiagonal matrix A.
*
*  Description
*  ===========
*
*  CLANGT returns the value
*
*     CLANGT = ( max(abs(A(i,j))), NORM = 'M' or 'm'
*              (
*              ( norm1(A),         NORM = '1', 'O' or 'o'
*              (
*              ( normI(A),         NORM = 'I' or 'i'
*              (
*              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
*
*  where  norm1  denotes the  one norm of a matrix (maximum column sum),
*  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
*  normF  denotes the  Frobenius norm of a matrix (square root of sum of
*  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
*
*  Arguments
*  =========
*
*  NORM    (input) CHARACTER*1
*          Specifies the value to be returned in CLANGT as described
*          above.
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.  When N = 0, CLANGT is
*          set to zero.
*
*  DL      (input) COMPLEX array, dimension (N-1)
*          The (n-1) sub-diagonal elements of A.
*
*  D       (input) COMPLEX array, dimension (N)
*          The diagonal elements of A.
*
*  DU      (input) COMPLEX array, dimension (N-1)
*          The (n-1) super-diagonal elements of A.
*
*  =====================================================================
*
*     .. Parameters ..
REAL               ONE, ZERO
PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
INTEGER            I
REAL               ANORM, SCALE, SUM
*     ..
*     .. External Functions ..
LOGICAL            LSAME
EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
EXTERNAL           CLASSQ
*     ..
*     .. Intrinsic Functions ..
INTRINSIC          ABS, MAX, SQRT
*     ..
*     .. Executable Statements ..
*
IF( N.LE.0 ) THEN
ANORM = ZERO
ELSE IF( LSAME( NORM, 'M' ) ) THEN
*
*        Find max(abs(A(i,j))).
*
ANORM = ABS( D( N ) )
DO 10 I = 1, N - 1
ANORM = MAX( ANORM, ABS( DL( I ) ) )
ANORM = MAX( ANORM, ABS( D( I ) ) )
ANORM = MAX( ANORM, ABS( DU( I ) ) )
10    CONTINUE
ELSE IF( LSAME( NORM, 'O' ) .OR. NORM.EQ.'1' ) THEN
*
*        Find norm1(A).
*
IF( N.EQ.1 ) THEN
ANORM = ABS( D( 1 ) )
ELSE
ANORM = MAX( ABS( D( 1 ) )+ABS( DL( 1 ) ),
\$              ABS( D( N ) )+ABS( DU( N-1 ) ) )
DO 20 I = 2, N - 1
ANORM = MAX( ANORM, ABS( D( I ) )+ABS( DL( I ) )+
\$                 ABS( DU( I-1 ) ) )
20       CONTINUE
END IF
ELSE IF( LSAME( NORM, 'I' ) ) THEN
*
*        Find normI(A).
*
IF( N.EQ.1 ) THEN
ANORM = ABS( D( 1 ) )
ELSE
ANORM = MAX( ABS( D( 1 ) )+ABS( DU( 1 ) ),
\$              ABS( D( N ) )+ABS( DL( N-1 ) ) )
DO 30 I = 2, N - 1
ANORM = MAX( ANORM, ABS( D( I ) )+ABS( DU( I ) )+
\$                 ABS( DL( I-1 ) ) )
30       CONTINUE
END IF
ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
*        Find normF(A).
*
SCALE = ZERO
SUM = ONE
CALL CLASSQ( N, D, 1, SCALE, SUM )
IF( N.GT.1 ) THEN
CALL CLASSQ( N-1, DL, 1, SCALE, SUM )
CALL CLASSQ( N-1, DU, 1, SCALE, SUM )
END IF
ANORM = SCALE*SQRT( SUM )
END IF
*
CLANGT = ANORM
RETURN
*
*     End of CLANGT
*
END

```