```      SUBROUTINE CLAIC1( JOB, J, X, SEST, W, GAMMA, SESTPR, S, C )
*
*  -- LAPACK auxiliary routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
INTEGER            J, JOB
REAL               SEST, SESTPR
COMPLEX            C, GAMMA, S
*     ..
*     .. Array Arguments ..
COMPLEX            W( J ), X( J )
*     ..
*
*  Purpose
*  =======
*
*  CLAIC1 applies one step of incremental condition estimation in
*  its simplest version:
*
*  Let x, twonorm(x) = 1, be an approximate singular vector of an j-by-j
*  lower triangular matrix L, such that
*           twonorm(L*x) = sest
*  Then CLAIC1 computes sestpr, s, c such that
*  the vector
*                  [ s*x ]
*           xhat = [  c  ]
*  is an approximate singular vector of
*                  [ L     0  ]
*           Lhat = [ w' gamma ]
*  in the sense that
*           twonorm(Lhat*xhat) = sestpr.
*
*  Depending on JOB, an estimate for the largest or smallest singular
*  value is computed.
*
*  Note that [s c]' and sestpr**2 is an eigenpair of the system
*
*      diag(sest*sest, 0) + [alpha  gamma] * [ conjg(alpha) ]
*                                            [ conjg(gamma) ]
*
*  where  alpha =  conjg(x)'*w.
*
*  Arguments
*  =========
*
*  JOB     (input) INTEGER
*          = 1: an estimate for the largest singular value is computed.
*          = 2: an estimate for the smallest singular value is computed.
*
*  J       (input) INTEGER
*          Length of X and W
*
*  X       (input) COMPLEX array, dimension (J)
*          The j-vector x.
*
*  SEST    (input) REAL
*          Estimated singular value of j by j matrix L
*
*  W       (input) COMPLEX array, dimension (J)
*          The j-vector w.
*
*  GAMMA   (input) COMPLEX
*          The diagonal element gamma.
*
*  SESTPR  (output) REAL
*          Estimated singular value of (j+1) by (j+1) matrix Lhat.
*
*  S       (output) COMPLEX
*          Sine needed in forming xhat.
*
*  C       (output) COMPLEX
*          Cosine needed in forming xhat.
*
*  =====================================================================
*
*     .. Parameters ..
REAL               ZERO, ONE, TWO
PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0 )
REAL               HALF, FOUR
PARAMETER          ( HALF = 0.5E0, FOUR = 4.0E0 )
*     ..
*     .. Local Scalars ..
REAL               ABSALP, ABSEST, ABSGAM, B, EPS, NORMA, S1, S2,
\$                   SCL, T, TEST, TMP, ZETA1, ZETA2
COMPLEX            ALPHA, COSINE, SINE
*     ..
*     .. Intrinsic Functions ..
INTRINSIC          ABS, CONJG, MAX, SQRT
*     ..
*     .. External Functions ..
REAL               SLAMCH
COMPLEX            CDOTC
EXTERNAL           SLAMCH, CDOTC
*     ..
*     .. Executable Statements ..
*
EPS = SLAMCH( 'Epsilon' )
ALPHA = CDOTC( J, X, 1, W, 1 )
*
ABSALP = ABS( ALPHA )
ABSGAM = ABS( GAMMA )
ABSEST = ABS( SEST )
*
IF( JOB.EQ.1 ) THEN
*
*        Estimating largest singular value
*
*        special cases
*
IF( SEST.EQ.ZERO ) THEN
S1 = MAX( ABSGAM, ABSALP )
IF( S1.EQ.ZERO ) THEN
S = ZERO
C = ONE
SESTPR = ZERO
ELSE
S = ALPHA / S1
C = GAMMA / S1
TMP = SQRT( S*CONJG( S )+C*CONJG( C ) )
S = S / TMP
C = C / TMP
SESTPR = S1*TMP
END IF
RETURN
ELSE IF( ABSGAM.LE.EPS*ABSEST ) THEN
S = ONE
C = ZERO
TMP = MAX( ABSEST, ABSALP )
S1 = ABSEST / TMP
S2 = ABSALP / TMP
SESTPR = TMP*SQRT( S1*S1+S2*S2 )
RETURN
ELSE IF( ABSALP.LE.EPS*ABSEST ) THEN
S1 = ABSGAM
S2 = ABSEST
IF( S1.LE.S2 ) THEN
S = ONE
C = ZERO
SESTPR = S2
ELSE
S = ZERO
C = ONE
SESTPR = S1
END IF
RETURN
ELSE IF( ABSEST.LE.EPS*ABSALP .OR. ABSEST.LE.EPS*ABSGAM ) THEN
S1 = ABSGAM
S2 = ABSALP
IF( S1.LE.S2 ) THEN
TMP = S1 / S2
SCL = SQRT( ONE+TMP*TMP )
SESTPR = S2*SCL
S = ( ALPHA / S2 ) / SCL
C = ( GAMMA / S2 ) / SCL
ELSE
TMP = S2 / S1
SCL = SQRT( ONE+TMP*TMP )
SESTPR = S1*SCL
S = ( ALPHA / S1 ) / SCL
C = ( GAMMA / S1 ) / SCL
END IF
RETURN
ELSE
*
*           normal case
*
ZETA1 = ABSALP / ABSEST
ZETA2 = ABSGAM / ABSEST
*
B = ( ONE-ZETA1*ZETA1-ZETA2*ZETA2 )*HALF
C = ZETA1*ZETA1
IF( B.GT.ZERO ) THEN
T = C / ( B+SQRT( B*B+C ) )
ELSE
T = SQRT( B*B+C ) - B
END IF
*
SINE = -( ALPHA / ABSEST ) / T
COSINE = -( GAMMA / ABSEST ) / ( ONE+T )
TMP = SQRT( SINE*CONJG( SINE )+COSINE*CONJG( COSINE ) )
S = SINE / TMP
C = COSINE / TMP
SESTPR = SQRT( T+ONE )*ABSEST
RETURN
END IF
*
ELSE IF( JOB.EQ.2 ) THEN
*
*        Estimating smallest singular value
*
*        special cases
*
IF( SEST.EQ.ZERO ) THEN
SESTPR = ZERO
IF( MAX( ABSGAM, ABSALP ).EQ.ZERO ) THEN
SINE = ONE
COSINE = ZERO
ELSE
SINE = -CONJG( GAMMA )
COSINE = CONJG( ALPHA )
END IF
S1 = MAX( ABS( SINE ), ABS( COSINE ) )
S = SINE / S1
C = COSINE / S1
TMP = SQRT( S*CONJG( S )+C*CONJG( C ) )
S = S / TMP
C = C / TMP
RETURN
ELSE IF( ABSGAM.LE.EPS*ABSEST ) THEN
S = ZERO
C = ONE
SESTPR = ABSGAM
RETURN
ELSE IF( ABSALP.LE.EPS*ABSEST ) THEN
S1 = ABSGAM
S2 = ABSEST
IF( S1.LE.S2 ) THEN
S = ZERO
C = ONE
SESTPR = S1
ELSE
S = ONE
C = ZERO
SESTPR = S2
END IF
RETURN
ELSE IF( ABSEST.LE.EPS*ABSALP .OR. ABSEST.LE.EPS*ABSGAM ) THEN
S1 = ABSGAM
S2 = ABSALP
IF( S1.LE.S2 ) THEN
TMP = S1 / S2
SCL = SQRT( ONE+TMP*TMP )
SESTPR = ABSEST*( TMP / SCL )
S = -( CONJG( GAMMA ) / S2 ) / SCL
C = ( CONJG( ALPHA ) / S2 ) / SCL
ELSE
TMP = S2 / S1
SCL = SQRT( ONE+TMP*TMP )
SESTPR = ABSEST / SCL
S = -( CONJG( GAMMA ) / S1 ) / SCL
C = ( CONJG( ALPHA ) / S1 ) / SCL
END IF
RETURN
ELSE
*
*           normal case
*
ZETA1 = ABSALP / ABSEST
ZETA2 = ABSGAM / ABSEST
*
NORMA = MAX( ONE+ZETA1*ZETA1+ZETA1*ZETA2,
\$              ZETA1*ZETA2+ZETA2*ZETA2 )
*
*           See if root is closer to zero or to ONE
*
TEST = ONE + TWO*( ZETA1-ZETA2 )*( ZETA1+ZETA2 )
IF( TEST.GE.ZERO ) THEN
*
*              root is close to zero, compute directly
*
B = ( ZETA1*ZETA1+ZETA2*ZETA2+ONE )*HALF
C = ZETA2*ZETA2
T = C / ( B+SQRT( ABS( B*B-C ) ) )
SINE = ( ALPHA / ABSEST ) / ( ONE-T )
COSINE = -( GAMMA / ABSEST ) / T
SESTPR = SQRT( T+FOUR*EPS*EPS*NORMA )*ABSEST
ELSE
*
*              root is closer to ONE, shift by that amount
*
B = ( ZETA2*ZETA2+ZETA1*ZETA1-ONE )*HALF
C = ZETA1*ZETA1
IF( B.GE.ZERO ) THEN
T = -C / ( B+SQRT( B*B+C ) )
ELSE
T = B - SQRT( B*B+C )
END IF
SINE = -( ALPHA / ABSEST ) / T
COSINE = -( GAMMA / ABSEST ) / ( ONE+T )
SESTPR = SQRT( ONE+T+FOUR*EPS*EPS*NORMA )*ABSEST
END IF
TMP = SQRT( SINE*CONJG( SINE )+COSINE*CONJG( COSINE ) )
S = SINE / TMP
C = COSINE / TMP
RETURN
*
END IF
END IF
RETURN
*
*     End of CLAIC1
*
END

```