SUBROUTINE CGBSV( N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB, INFO )
*
* -- LAPACK driver routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2006
*
* .. Scalar Arguments ..
INTEGER INFO, KL, KU, LDAB, LDB, N, NRHS
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
COMPLEX AB( LDAB, * ), B( LDB, * )
* ..
*
* Purpose
* =======
*
* CGBSV computes the solution to a complex system of linear equations
* A * X = B, where A is a band matrix of order N with KL subdiagonals
* and KU superdiagonals, and X and B are N-by-NRHS matrices.
*
* The LU decomposition with partial pivoting and row interchanges is
* used to factor A as A = L * U, where L is a product of permutation
* and unit lower triangular matrices with KL subdiagonals, and U is
* upper triangular with KL+KU superdiagonals. The factored form of A
* is then used to solve the system of equations A * X = B.
*
* Arguments
* =========
*
* N (input) INTEGER
* The number of linear equations, i.e., the order of the
* matrix A. N >= 0.
*
* KL (input) INTEGER
* The number of subdiagonals within the band of A. KL >= 0.
*
* KU (input) INTEGER
* The number of superdiagonals within the band of A. KU >= 0.
*
* NRHS (input) INTEGER
* The number of right hand sides, i.e., the number of columns
* of the matrix B. NRHS >= 0.
*
* AB (input/output) COMPLEX array, dimension (LDAB,N)
* On entry, the matrix A in band storage, in rows KL+1 to
* 2*KL+KU+1; rows 1 to KL of the array need not be set.
* The j-th column of A is stored in the j-th column of the
* array AB as follows:
* AB(KL+KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+KL)
* On exit, details of the factorization: U is stored as an
* upper triangular band matrix with KL+KU superdiagonals in
* rows 1 to KL+KU+1, and the multipliers used during the
* factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
* See below for further details.
*
* LDAB (input) INTEGER
* The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
*
* IPIV (output) INTEGER array, dimension (N)
* The pivot indices that define the permutation matrix P;
* row i of the matrix was interchanged with row IPIV(i).
*
* B (input/output) COMPLEX array, dimension (LDB,NRHS)
* On entry, the N-by-NRHS right hand side matrix B.
* On exit, if INFO = 0, the N-by-NRHS solution matrix X.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(1,N).
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: if INFO = i, U(i,i) is exactly zero. The factorization
* has been completed, but the factor U is exactly
* singular, and the solution has not been computed.
*
* Further Details
* ===============
*
* The band storage scheme is illustrated by the following example, when
* M = N = 6, KL = 2, KU = 1:
*
* On entry: On exit:
*
* * * * + + + * * * u14 u25 u36
* * * + + + + * * u13 u24 u35 u46
* * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
* a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
* a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 *
* a31 a42 a53 a64 * * m31 m42 m53 m64 * *
*
* Array elements marked * are not used by the routine; elements marked
* + need not be set on entry, but are required by the routine to store
* elements of U because of fill-in resulting from the row interchanges.
*
* =====================================================================
*
* .. External Subroutines ..
EXTERNAL CGBTRF, CGBTRS, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( KL.LT.0 ) THEN
INFO = -2
ELSE IF( KU.LT.0 ) THEN
INFO = -3
ELSE IF( NRHS.LT.0 ) THEN
INFO = -4
ELSE IF( LDAB.LT.2*KL+KU+1 ) THEN
INFO = -6
ELSE IF( LDB.LT.MAX( N, 1 ) ) THEN
INFO = -9
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CGBSV ', -INFO )
RETURN
END IF
*
* Compute the LU factorization of the band matrix A.
*
CALL CGBTRF( N, N, KL, KU, AB, LDAB, IPIV, INFO )
IF( INFO.EQ.0 ) THEN
*
* Solve the system A*X = B, overwriting B with X.
*
CALL CGBTRS( 'No transpose', N, KL, KU, NRHS, AB, LDAB, IPIV,
$ B, LDB, INFO )
END IF
RETURN
*
* End of CGBSV
*
END