#include "blaswrap.h" /* -- translated by f2c (version 19990503). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Table of constant values */ static integer c__4 = 4; static integer c__2 = 2; static integer c__1 = 1; static integer c__14 = 14; static integer c__0 = 0; /* Subroutine */ int ztimgt_(char *line, integer *nm, integer *mval, integer * nns, integer *nsval, integer *nlda, integer *ldaval, doublereal * timmin, doublecomplex *a, doublecomplex *b, integer *iwork, doublereal *reslts, integer *ldr1, integer *ldr2, integer *ldr3, integer *nout, ftnlen line_len) { /* Initialized data */ static char subnam[6*4] = "ZGTTRF" "ZGTTRS" "ZGTSV " "ZGTSL "; static char transs[1*3] = "N" "T" "C"; /* Format strings */ static char fmt_9999[] = "(1x,a6,\002 timing run not attempted\002,/)"; static char fmt_9997[] = "(/\002 *** Speed of \002,a6,\002 in megaflops " "***\002)"; static char fmt_9996[] = "(5x,\002line \002,i2,\002 with LDA = \002,i5)"; static char fmt_9998[] = "(\002 ZGTTRS with TRANS = '\002,a1,\002'\002,/)" ; /* System generated locals */ integer reslts_dim1, reslts_dim2, reslts_dim3, reslts_offset, i__1, i__2, i__3, i__4; /* Builtin functions Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void), s_wsle(cilist *), e_wsle(void); /* Local variables */ static integer ilda, info; static char path[3]; static doublereal time; static integer isub, nrhs, i__, m, n; static char cname[6]; extern doublereal dopgb_(char *, integer *, integer *, integer *, integer *, integer *); static integer laval[1]; static char trans[1]; extern /* Subroutine */ int zgtsl_(integer *, doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex *, integer *); static doublereal s1, s2; extern /* Subroutine */ int zgtsv_(integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex *, integer *, integer *); static integer ic, im; extern doublereal dsecnd_(void); extern /* Subroutine */ int atimck_(integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, ftnlen); extern doublereal dmflop_(doublereal *, doublereal *, integer *); extern /* Subroutine */ int atimin_(char *, char *, integer *, char *, logical *, integer *, integer *, ftnlen, ftnlen, ftnlen), dprtbl_( char *, char *, integer *, integer *, integer *, integer *, integer *, doublereal *, integer *, integer *, integer *, ftnlen, ftnlen); static integer itrans; static doublereal untime; static logical timsub[4]; extern /* Subroutine */ int ztimmg_(integer *, integer *, integer *, doublecomplex *, integer *, integer *, integer *), zgttrf_( integer *, doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex *, integer *, integer *), zgttrs_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, integer *); static integer ldb, icl; static doublereal ops; /* Fortran I/O blocks */ static cilist io___8 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___25 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___26 = { 0, 0, 0, fmt_9996, 0 }; static cilist io___27 = { 0, 0, 0, 0, 0 }; static cilist io___29 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___30 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___31 = { 0, 0, 0, fmt_9998, 0 }; #define subnam_ref(a_0,a_1) &subnam[(a_1)*6 + a_0 - 6] #define reslts_ref(a_1,a_2,a_3,a_4) reslts[(((a_4)*reslts_dim3 + (a_3))*\ reslts_dim2 + (a_2))*reslts_dim1 + a_1] /* -- LAPACK timing routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University June 30, 1999 Purpose ======= ZTIMGT times ZGTTRF, -TRS, -SV, and -SL. Arguments ========= LINE (input) CHARACTER*80 The input line that requested this routine. The first six characters contain either the name of a subroutine or a generic path name. The remaining characters may be used to specify the individual routines to be timed. See ATIMIN for a full description of the format of the input line. NM (input) INTEGER The number of values of M contained in the vector MVAL. MVAL (input) INTEGER array, dimension (NM) The values of the matrix size M. NNS (input) INTEGER The number of values of NRHS contained in the vector NSVAL. NSVAL (input) INTEGER array, dimension (NNS) The values of the number of right hand sides NRHS. NLDA (input) INTEGER The number of values of LDA contained in the vector LDAVAL. LDAVAL (input) INTEGER array, dimension (NLDA) The values of the leading dimension of the array A. TIMMIN (input) DOUBLE PRECISION The minimum time a subroutine will be timed. A (workspace) COMPLEX*16 array, dimension (NMAX*4) where NMAX is the maximum value permitted for N. B (workspace) COMPLEX*16 array, dimension (LDAMAX*NMAX) IWORK (workspace) INTEGER array, dimension (NMAX) RESLTS (output) DOUBLE PRECISION array, dimension (LDR1,LDR2,LDR3,NSUBS+1) The timing results for each subroutine over the relevant values of N. LDR1 (input) INTEGER The first dimension of RESLTS. LDR1 >= 1. LDR2 (input) INTEGER The second dimension of RESLTS. LDR2 >= max(1,NM). LDR3 (input) INTEGER The third dimension of RESLTS. LDR3 >= max(1,NLDA). NOUT (input) INTEGER The unit number for output. ===================================================================== Parameter adjustments */ --mval; --nsval; --ldaval; --a; --b; --iwork; reslts_dim1 = *ldr1; reslts_dim2 = *ldr2; reslts_dim3 = *ldr3; reslts_offset = 1 + reslts_dim1 * (1 + reslts_dim2 * (1 + reslts_dim3 * 1) ); reslts -= reslts_offset; /* Function Body Extract the timing request from the input line. */ s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "GT", (ftnlen)2, (ftnlen)2); atimin_(path, line, &c__4, subnam, timsub, nout, &info, (ftnlen)3, ( ftnlen)80, (ftnlen)6); if (info != 0) { goto L180; } /* Check that N <= LDA for the input values. */ for (isub = 2; isub <= 4; ++isub) { if (! timsub[isub - 1]) { goto L10; } s_copy(cname, subnam_ref(0, isub), (ftnlen)6, (ftnlen)6); atimck_(&c__2, cname, nm, &mval[1], nlda, &ldaval[1], nout, &info, ( ftnlen)6); if (info > 0) { io___8.ciunit = *nout; s_wsfe(&io___8); do_fio(&c__1, cname, (ftnlen)6); e_wsfe(); timsub[isub - 1] = FALSE_; } L10: ; } /* Do for each value of M: */ i__1 = *nm; for (im = 1; im <= i__1; ++im) { m = mval[im]; n = max(m,1); /* Time ZGTTRF */ if (timsub[0]) { i__2 = n * 3; ztimmg_(&c__14, &m, &m, &a[1], &i__2, &c__0, &c__0); ic = 0; s1 = dsecnd_(); L20: zgttrf_(&m, &a[1], &a[n], &a[n * 2], &a[n * 3 - 2], &iwork[1], & info); s2 = dsecnd_(); time = s2 - s1; ++ic; if (time < *timmin) { i__2 = n * 3; ztimmg_(&c__14, &m, &m, &a[1], &i__2, &c__0, &c__0); goto L20; } /* Subtract the time used in ZTIMMG. */ icl = 1; s1 = dsecnd_(); L30: s2 = dsecnd_(); untime = s2 - s1; ++icl; if (icl <= ic) { i__2 = n * 3; ztimmg_(&c__14, &m, &m, &a[1], &i__2, &c__0, &c__0); goto L30; } time = (time - untime) / (doublereal) ic; ops = dopgb_("ZGTTRF", &m, &m, &c__1, &c__1, &iwork[1]) ; reslts_ref(1, im, 1, 1) = dmflop_(&ops, &time, &info); } else if (timsub[1]) { i__2 = n * 3; ztimmg_(&c__14, &m, &m, &a[1], &i__2, &c__0, &c__0); } /* Generate another matrix and factor it using ZGTTRF so that the factored form can be used in timing the other routines. */ if (ic != 1) { zgttrf_(&m, &a[1], &a[n], &a[n * 2], &a[n * 3 - 2], &iwork[1], & info); } /* Time ZGTTRS */ if (timsub[1]) { for (itrans = 1; itrans <= 3; ++itrans) { *(unsigned char *)trans = *(unsigned char *)&transs[itrans - 1]; if (itrans == 1) { isub = 2; } else { isub = itrans + 3; } i__2 = *nlda; for (ilda = 1; ilda <= i__2; ++ilda) { ldb = ldaval[ilda]; i__3 = *nns; for (i__ = 1; i__ <= i__3; ++i__) { nrhs = nsval[i__]; ztimmg_(&c__0, &m, &nrhs, &b[1], &ldb, &c__0, &c__0); ic = 0; s1 = dsecnd_(); L40: zgttrs_(trans, &m, &nrhs, &a[1], &a[n], &a[n * 2], &a[ n * 3 - 2], &iwork[1], &b[1], &ldb, &info); s2 = dsecnd_(); time = s2 - s1; ++ic; if (time < *timmin) { ztimmg_(&c__0, &m, &nrhs, &b[1], &ldb, &c__0, & c__0); goto L40; } /* Subtract the time used in ZTIMMG. */ icl = 1; s1 = dsecnd_(); L50: s2 = dsecnd_(); untime = s2 - s1; ++icl; if (icl <= ic) { ztimmg_(&c__0, &m, &nrhs, &b[1], &ldb, &c__0, & c__0); goto L50; } time = (time - untime) / (doublereal) ic; ops = dopgb_("ZGTTRS", &m, &nrhs, &c__0, &c__0, & iwork[1]); reslts_ref(i__, im, ilda, isub) = dmflop_(&ops, &time, &info); /* L60: */ } /* L70: */ } /* L80: */ } } if (timsub[2]) { i__2 = *nlda; for (ilda = 1; ilda <= i__2; ++ilda) { ldb = ldaval[ilda]; i__3 = *nns; for (i__ = 1; i__ <= i__3; ++i__) { nrhs = nsval[i__]; i__4 = n * 3; ztimmg_(&c__14, &m, &m, &a[1], &i__4, &c__0, &c__0); ztimmg_(&c__0, &m, &nrhs, &b[1], &ldb, &c__0, &c__0); ic = 0; s1 = dsecnd_(); L90: zgtsv_(&m, &nrhs, &a[1], &a[n], &a[n * 2], &b[1], &ldb, & info); s2 = dsecnd_(); time = s2 - s1; ++ic; if (time < *timmin) { i__4 = n * 3; ztimmg_(&c__14, &m, &m, &a[1], &i__4, &c__0, &c__0); ztimmg_(&c__0, &m, &nrhs, &b[1], &ldb, &c__0, &c__0); goto L90; } /* Subtract the time used in ZTIMMG. */ icl = 1; s1 = dsecnd_(); L100: s2 = dsecnd_(); untime = s2 - s1; ++icl; if (icl <= ic) { i__4 = n * 3; ztimmg_(&c__14, &m, &m, &a[1], &i__4, &c__0, &c__0); ztimmg_(&c__0, &m, &nrhs, &b[1], &ldb, &c__0, &c__0); goto L100; } time = (time - untime) / (doublereal) ic; ops = dopgb_("ZGTSV ", &m, &nrhs, &c__0, &c__0, &iwork[1]); reslts_ref(i__, im, ilda, 3) = dmflop_(&ops, &time, &info) ; /* L110: */ } /* L120: */ } } if (timsub[3]) { i__2 = n * 3; ztimmg_(&c__14, &m, &m, &a[1], &i__2, &c__0, &c__0); ztimmg_(&c__0, &m, &c__1, &b[1], &n, &c__0, &c__0); ic = 0; s1 = dsecnd_(); L130: zgtsl_(&m, &a[1], &a[n], &a[n * 2], &b[1], &info); s2 = dsecnd_(); time = s2 - s1; ++ic; if (time < *timmin) { i__2 = n * 3; ztimmg_(&c__14, &m, &m, &a[1], &i__2, &c__0, &c__0); ztimmg_(&c__0, &m, &c__1, &b[1], &ldb, &c__0, &c__0); goto L130; } /* Subtract the time used in ZTIMMG. */ icl = 1; s1 = dsecnd_(); L140: s2 = dsecnd_(); untime = s2 - s1; ++icl; if (icl <= ic) { i__2 = n * 3; ztimmg_(&c__14, &m, &m, &a[1], &i__2, &c__0, &c__0); ztimmg_(&c__0, &m, &c__1, &b[1], &ldb, &c__0, &c__0); goto L140; } time = (time - untime) / (doublereal) ic; ops = dopgb_("ZGTSV ", &m, &c__1, &c__0, &c__0, &iwork[1]); reslts_ref(1, im, 1, 4) = dmflop_(&ops, &time, &info); } /* L150: */ } /* Print a table of results for each timed routine. */ for (isub = 1; isub <= 4; ++isub) { if (! timsub[isub - 1]) { goto L170; } io___25.ciunit = *nout; s_wsfe(&io___25); do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6); e_wsfe(); if (*nlda > 1 && (timsub[1] || timsub[2])) { i__1 = *nlda; for (i__ = 1; i__ <= i__1; ++i__) { io___26.ciunit = *nout; s_wsfe(&io___26); do_fio(&c__1, (char *)&i__, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&ldaval[i__], (ftnlen)sizeof(integer)); e_wsfe(); /* L160: */ } } io___27.ciunit = *nout; s_wsle(&io___27); e_wsle(); if (isub == 1) { dprtbl_(" ", "N", &c__1, laval, nm, &mval[1], &c__1, &reslts[ reslts_offset], ldr1, ldr2, nout, (ftnlen)1, (ftnlen)1); } else if (isub == 2) { io___29.ciunit = *nout; s_wsfe(&io___29); do_fio(&c__1, "N", (ftnlen)1); e_wsfe(); dprtbl_("NRHS", "N", nns, &nsval[1], nm, &mval[1], nlda, & reslts_ref(1, 1, 1, 2), ldr1, ldr2, nout, (ftnlen)4, ( ftnlen)1); io___30.ciunit = *nout; s_wsfe(&io___30); do_fio(&c__1, "T", (ftnlen)1); e_wsfe(); dprtbl_("NRHS", "N", nns, &nsval[1], nm, &mval[1], nlda, & reslts_ref(1, 1, 1, 5), ldr1, ldr2, nout, (ftnlen)4, ( ftnlen)1); io___31.ciunit = *nout; s_wsfe(&io___31); do_fio(&c__1, "C", (ftnlen)1); e_wsfe(); dprtbl_("NRHS", "N", nns, &nsval[1], nm, &mval[1], nlda, & reslts_ref(1, 1, 1, 6), ldr1, ldr2, nout, (ftnlen)4, ( ftnlen)1); } else if (isub == 3) { dprtbl_("NRHS", "N", nns, &nsval[1], nm, &mval[1], nlda, & reslts_ref(1, 1, 1, 3), ldr1, ldr2, nout, (ftnlen)4, ( ftnlen)1); } else if (isub == 4) { dprtbl_(" ", "N", &c__1, laval, nm, &mval[1], &c__1, &reslts_ref( 1, 1, 1, 4), ldr1, ldr2, nout, (ftnlen)1, (ftnlen)1); } L170: ; } L180: return 0; /* End of ZTIMGT */ } /* ztimgt_ */ #undef reslts_ref #undef subnam_ref