#include "blaswrap.h" /* -- translated by f2c (version 19990503). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Table of constant values */ static integer c__4 = 4; static integer c__2 = 2; static integer c__1 = 1; static integer c__3 = 3; static real c_b27 = 100.f; static real c_b28 = 1.f; static integer c_n1 = -1; static integer c__0 = 0; /* Subroutine */ int stimtd_(char *line, integer *nm, integer *mval, integer * nn, integer *nval, integer *nnb, integer *nbval, integer *nxval, integer *nlda, integer *ldaval, real *timmin, real *a, real *b, real * d__, real *tau, real *work, real *reslts, integer *ldr1, integer * ldr2, integer *ldr3, integer *nout, ftnlen line_len) { /* Initialized data */ static char subnam[6*4] = "SSYTRD" "TRED1 " "SORGTR" "SORMTR"; static char sides[1*2] = "L" "R"; static char transs[1*2] = "N" "T"; static char uplos[1*2] = "U" "L"; static integer iseed[4] = { 0,0,0,1 }; /* Format strings */ static char fmt_9999[] = "(1x,a6,\002 timing run not attempted\002,/)"; static char fmt_9998[] = "(/\002 *** Speed of \002,a6,\002 in megaflops " "*** \002)"; static char fmt_9997[] = "(5x,\002line \002,i2,\002 with LDA = \002,i5)"; static char fmt_9996[] = "(/5x,a6,\002 with UPLO = '\002,a1,\002'\002,/)"; static char fmt_9995[] = "(/5x,a6,\002 with SIDE = '\002,a1,\002', UPLO " "= '\002,a1,\002', TRANS = '\002,a1,\002', \002,a1,\002 =\002,i6," "/)"; /* System generated locals */ integer reslts_dim1, reslts_dim2, reslts_dim3, reslts_offset, i__1, i__2, i__3, i__4, i__5, i__6; /* Builtin functions Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void), s_wsle(cilist *), e_wsle(void); /* Local variables */ static integer ilda; static char side[1]; static integer info; static char path[3]; static real time; static integer isub; static char uplo[1]; extern /* Subroutine */ int tred1_(integer *, integer *, real *, real *, real *, real *); static integer i__, m, n; static char cname[6]; static integer iside, itoff, itran; extern doublereal sopla_(char *, integer *, integer *, integer *, integer *, integer *); extern /* Subroutine */ int icopy_(integer *, integer *, integer *, integer *, integer *); static char trans[1]; static integer iuplo, i3, i4, m1, n1; static real s1, s2; static integer ic; extern /* Subroutine */ int sprtb3_(char *, char *, integer *, integer *, integer *, integer *, integer *, integer *, real *, integer *, integer *, integer *, ftnlen, ftnlen); static integer nb, im, in, lw, nx, reseed[4]; extern /* Subroutine */ int atimck_(integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, ftnlen); extern doublereal second_(void); extern /* Subroutine */ int atimin_(char *, char *, integer *, char *, logical *, integer *, integer *, ftnlen, ftnlen, ftnlen), slacpy_( char *, integer *, integer *, real *, integer *, real *, integer * ), xlaenv_(integer *, integer *); extern doublereal smflop_(real *, real *, integer *); static real untime; extern /* Subroutine */ int stimmg_(integer *, integer *, integer *, real *, integer *, integer *, integer *); static logical timsub[4]; extern /* Subroutine */ int slatms_(integer *, integer *, char *, integer *, char *, real *, integer *, real *, real *, integer *, integer * , char *, real *, integer *, real *, integer *), sprtbl_(char *, char *, integer *, integer *, integer *, integer *, integer *, real *, integer *, integer *, integer *, ftnlen, ftnlen), sorgtr_(char *, integer *, real *, integer *, real *, real *, integer *, integer *), sormtr_(char *, char *, char *, integer *, integer *, real *, integer *, real *, real *, integer *, real *, integer *, integer *), ssytrd_(char *, integer *, real *, integer *, real *, real *, real *, real *, integer *, integer *); static integer lda, icl, inb; static real ops; static char lab1[1], lab2[1]; /* Fortran I/O blocks */ static cilist io___10 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___11 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___42 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___44 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___45 = { 0, 0, 0, 0, 0 }; static cilist io___46 = { 0, 0, 0, fmt_9996, 0 }; static cilist io___49 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___50 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___51 = { 0, 0, 0, fmt_9995, 0 }; #define subnam_ref(a_0,a_1) &subnam[(a_1)*6 + a_0 - 6] #define reslts_ref(a_1,a_2,a_3,a_4) reslts[(((a_4)*reslts_dim3 + (a_3))*\ reslts_dim2 + (a_2))*reslts_dim1 + a_1] /* -- LAPACK timing routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University March 31, 1993 Purpose ======= STIMTD times the LAPACK routines SSYTRD, SORGTR, and SORMTR and the EISPACK routine TRED1. Arguments ========= LINE (input) CHARACTER*80 The input line that requested this routine. The first six characters contain either the name of a subroutine or a generic path name. The remaining characters may be used to specify the individual routines to be timed. See ATIMIN for a full description of the format of the input line. NM (input) INTEGER The number of values of M contained in the vector MVAL. MVAL (input) INTEGER array, dimension (NM) The values of the matrix size M. NN (input) INTEGER The number of values of N contained in the vector NVAL. NVAL (input) INTEGER array, dimension (NN) The values of the matrix column dimension N. NNB (input) INTEGER The number of values of NB and NX contained in the vectors NBVAL and NXVAL. The blocking parameters are used in pairs (NB,NX). NBVAL (input) INTEGER array, dimension (NNB) The values of the blocksize NB. NXVAL (input) INTEGER array, dimension (NNB) The values of the crossover point NX. NLDA (input) INTEGER The number of values of LDA contained in the vector LDAVAL. LDAVAL (input) INTEGER array, dimension (NLDA) The values of the leading dimension of the array A. TIMMIN (input) REAL The minimum time a subroutine will be timed. A (workspace) REAL array, dimension (LDAMAX*NMAX) where LDAMAX and NMAX are the maximum values of LDA and N. B (workspace) REAL array, dimension (LDAMAX*NMAX) D (workspace) REAL array, dimension (2*NMAX-1) TAU (workspace) REAL array, dimension (NMAX) WORK (workspace) REAL array, dimension (NMAX*NBMAX) where NBMAX is the maximum value of NB. RESLTS (workspace) REAL array, dimension (LDR1,LDR2,LDR3,4*NN+3) The timing results for each subroutine over the relevant values of M, (NB,NX), LDA, and N. LDR1 (input) INTEGER The first dimension of RESLTS. LDR1 >= max(1,NNB). LDR2 (input) INTEGER The second dimension of RESLTS. LDR2 >= max(1,NM). LDR3 (input) INTEGER The third dimension of RESLTS. LDR3 >= max(1,2*NLDA). NOUT (input) INTEGER The unit number for output. Internal Parameters =================== MODE INTEGER The matrix type. MODE = 3 is a geometric distribution of eigenvalues. See SLATMS for further details. COND REAL The condition number of the matrix. The singular values are set to values from DMAX to DMAX/COND. DMAX REAL The magnitude of the largest singular value. ===================================================================== Parameter adjustments */ --mval; --nval; --nbval; --nxval; --ldaval; --a; --b; --d__; --tau; --work; reslts_dim1 = *ldr1; reslts_dim2 = *ldr2; reslts_dim3 = *ldr3; reslts_offset = 1 + reslts_dim1 * (1 + reslts_dim2 * (1 + reslts_dim3 * 1) ); reslts -= reslts_offset; /* Function Body Extract the timing request from the input line. */ s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16); s_copy(path + 1, "TD", (ftnlen)2, (ftnlen)2); atimin_(path, line, &c__4, subnam, timsub, nout, &info, (ftnlen)3, ( ftnlen)80, (ftnlen)6); if (info != 0) { goto L240; } /* Check that M <= LDA for the input values. */ s_copy(cname, line, (ftnlen)6, (ftnlen)6); atimck_(&c__2, cname, nm, &mval[1], nlda, &ldaval[1], nout, &info, ( ftnlen)6); if (info > 0) { io___10.ciunit = *nout; s_wsfe(&io___10); do_fio(&c__1, cname, (ftnlen)6); e_wsfe(); goto L240; } /* Check that K <= LDA for SORMTR */ if (timsub[3]) { atimck_(&c__3, cname, nn, &nval[1], nlda, &ldaval[1], nout, &info, ( ftnlen)6); if (info > 0) { io___11.ciunit = *nout; s_wsfe(&io___11); do_fio(&c__1, subnam_ref(0, 4), (ftnlen)6); e_wsfe(); timsub[3] = FALSE_; } } /* Do first for UPLO = 'U', then for UPLO = 'L' */ for (iuplo = 1; iuplo <= 2; ++iuplo) { *(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1]; /* Do for each value of M: */ i__1 = *nm; for (im = 1; im <= i__1; ++im) { m = mval[im]; icopy_(&c__4, iseed, &c__1, reseed, &c__1); /* Do for each value of LDA: */ i__2 = *nlda; for (ilda = 1; ilda <= i__2; ++ilda) { lda = ldaval[ilda]; i3 = (iuplo - 1) * *nlda + ilda; /* Do for each pair of values (NB, NX) in NBVAL and NXVAL. */ i__3 = *nnb; for (inb = 1; inb <= i__3; ++inb) { nb = nbval[inb]; xlaenv_(&c__1, &nb); nx = nxval[inb]; xlaenv_(&c__3, &nx); /* Computing MAX */ i__4 = 1, i__5 = m * max(1,nb); lw = max(i__4,i__5); /* Generate a test matrix of order M. */ icopy_(&c__4, reseed, &c__1, iseed, &c__1); slatms_(&m, &m, "Uniform", iseed, "Symmetric", &tau[1], & c__3, &c_b27, &c_b28, &m, &m, "No packing", &b[1], &lda, &work[1], &info); if (timsub[1] && inb == 1 && iuplo == 2) { /* TRED1: Eispack reduction using orthogonal transformations. */ slacpy_(uplo, &m, &m, &b[1], &lda, &a[1], &lda); ic = 0; s1 = second_(); L10: tred1_(&lda, &m, &a[1], &d__[1], &d__[m + 1], &d__[m + 1]); s2 = second_(); time = s2 - s1; ++ic; if (time < *timmin) { slacpy_(uplo, &m, &m, &b[1], &lda, &a[1], &lda); goto L10; } /* Subtract the time used in SLACPY. */ icl = 1; s1 = second_(); L20: s2 = second_(); untime = s2 - s1; ++icl; if (icl <= ic) { slacpy_(uplo, &m, &m, &b[1], &lda, &a[1], &lda); goto L20; } time = (time - untime) / (real) ic; ops = sopla_("SSYTRD", &m, &m, &c_n1, &c_n1, &nb); reslts_ref(inb, im, ilda, 2) = smflop_(&ops, &time, & info); } if (timsub[0]) { /* SSYTRD: Reduction to tridiagonal form */ slacpy_(uplo, &m, &m, &b[1], &lda, &a[1], &lda); ic = 0; s1 = second_(); L30: ssytrd_(uplo, &m, &a[1], &lda, &d__[1], &d__[m + 1], & tau[1], &work[1], &lw, &info); s2 = second_(); time = s2 - s1; ++ic; if (time < *timmin) { slacpy_(uplo, &m, &m, &b[1], &lda, &a[1], &lda); goto L30; } /* Subtract the time used in SLACPY. */ icl = 1; s1 = second_(); L40: s2 = second_(); untime = s2 - s1; ++icl; if (icl <= ic) { slacpy_(uplo, &m, &m, &a[1], &lda, &b[1], &lda); goto L40; } time = (time - untime) / (real) ic; ops = sopla_("SSYTRD", &m, &m, &c_n1, &c_n1, &nb); reslts_ref(inb, im, i3, 1) = smflop_(&ops, &time, & info); } else { /* If SSYTRD was not timed, generate a matrix and factor it using SSYTRD anyway so that the factored form of the matrix can be used in timing the other routines. */ slacpy_(uplo, &m, &m, &b[1], &lda, &a[1], &lda); ssytrd_(uplo, &m, &a[1], &lda, &d__[1], &d__[m + 1], & tau[1], &work[1], &lw, &info); } if (timsub[2]) { /* SORGTR: Generate the orthogonal matrix Q from the reduction to Hessenberg form A = Q*H*Q' */ slacpy_(uplo, &m, &m, &a[1], &lda, &b[1], &lda); ic = 0; s1 = second_(); L50: sorgtr_(uplo, &m, &b[1], &lda, &tau[1], &work[1], &lw, &info); s2 = second_(); time = s2 - s1; ++ic; if (time < *timmin) { slacpy_(uplo, &m, &m, &a[1], &lda, &b[1], &lda); goto L50; } /* Subtract the time used in SLACPY. */ icl = 1; s1 = second_(); L60: s2 = second_(); untime = s2 - s1; ++icl; if (icl <= ic) { slacpy_(uplo, &m, &m, &a[1], &lda, &b[1], &lda); goto L60; } time = (time - untime) / (real) ic; /* Op count for SORGTR: same as SORGQR( N-1, N-1, N-1, ... ) */ i__4 = m - 1; i__5 = m - 1; i__6 = m - 1; ops = sopla_("SORGQR", &i__4, &i__5, &i__6, &c_n1, & nb); reslts_ref(inb, im, i3, 3) = smflop_(&ops, &time, & info); } if (timsub[3]) { /* SORMTR: Multiply by Q stored as a product of elementary transformations */ i4 = 3; for (iside = 1; iside <= 2; ++iside) { *(unsigned char *)side = *(unsigned char *)&sides[ iside - 1]; i__4 = *nn; for (in = 1; in <= i__4; ++in) { n = nval[in]; /* Computing MAX */ i__5 = 1, i__6 = max(1,nb) * n; lw = max(i__5,i__6); if (iside == 1) { m1 = m; n1 = n; } else { m1 = n; n1 = m; } itoff = 0; for (itran = 1; itran <= 2; ++itran) { *(unsigned char *)trans = *(unsigned char *)&transs[itran - 1]; stimmg_(&c__0, &m1, &n1, &b[1], &lda, & c__0, &c__0); ic = 0; s1 = second_(); L70: sormtr_(side, uplo, trans, &m1, &n1, &a[1] , &lda, &tau[1], &b[1], &lda, & work[1], &lw, &info); s2 = second_(); time = s2 - s1; ++ic; if (time < *timmin) { stimmg_(&c__0, &m1, &n1, &b[1], &lda, &c__0, &c__0); goto L70; } /* Subtract the time used in STIMMG. */ icl = 1; s1 = second_(); L80: s2 = second_(); untime = s2 - s1; ++icl; if (icl <= ic) { stimmg_(&c__0, &m1, &n1, &b[1], &lda, &c__0, &c__0); goto L80; } time = (time - untime) / (real) ic; /* Op count for SORMTR, SIDE='L': same as SORMQR( 'L', TRANS, M-1, N, M-1, ...) Op count for SORMTR, SIDE='R': same as SORMQR( 'R', TRANS, M, N-1, N-1, ...) */ if (iside == 1) { i__5 = m1 - 1; i__6 = m1 - 1; ops = sopla_("SORMQR", &i__5, &n1, & i__6, &c_n1, &nb); } else { i__5 = n1 - 1; i__6 = n1 - 1; ops = sopla_("SORMQR", &m1, &i__5, & i__6, &c__1, &nb); } reslts_ref(inb, im, i3, i4 + itoff + in) = smflop_(&ops, &time, &info); itoff = *nn; /* L90: */ } /* L100: */ } i4 += *nn << 1; /* L110: */ } } /* L120: */ } /* L130: */ } /* L140: */ } /* L150: */ } /* Print tables of results for SSYTRD, TRED1, and SORGTR */ for (isub = 1; isub <= 3; ++isub) { if (! timsub[isub - 1]) { goto L180; } io___42.ciunit = *nout; s_wsfe(&io___42); do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6); e_wsfe(); if (*nlda > 1) { i__1 = *nlda; for (i__ = 1; i__ <= i__1; ++i__) { io___44.ciunit = *nout; s_wsfe(&io___44); do_fio(&c__1, (char *)&i__, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&ldaval[i__], (ftnlen)sizeof(integer)); e_wsfe(); /* L160: */ } } if (isub == 2) { io___45.ciunit = *nout; s_wsle(&io___45); e_wsle(); sprtb3_(" ", "N", &c__1, &nbval[1], &nxval[1], nm, &mval[1], nlda, &reslts_ref(1, 1, 1, isub), ldr1, ldr2, nout, (ftnlen)1, (ftnlen)1); } else { i3 = 1; for (iuplo = 1; iuplo <= 2; ++iuplo) { io___46.ciunit = *nout; s_wsfe(&io___46); do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6); do_fio(&c__1, uplos + (iuplo - 1), (ftnlen)1); e_wsfe(); sprtb3_("( NB, NX)", "N", nnb, &nbval[1], &nxval[1], nm, & mval[1], nlda, &reslts_ref(1, 1, i3, isub), ldr1, ldr2, nout, (ftnlen)11, (ftnlen)1); i3 += *nlda; /* L170: */ } } L180: ; } /* Print tables of results for SORMTR */ isub = 4; if (timsub[isub - 1]) { i4 = 3; for (iside = 1; iside <= 2; ++iside) { if (iside == 1) { *(unsigned char *)lab1 = 'M'; *(unsigned char *)lab2 = 'N'; if (*nlda > 1) { io___49.ciunit = *nout; s_wsfe(&io___49); do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6); e_wsfe(); i__1 = *nlda; for (i__ = 1; i__ <= i__1; ++i__) { io___50.ciunit = *nout; s_wsfe(&io___50); do_fio(&c__1, (char *)&i__, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&ldaval[i__], (ftnlen)sizeof( integer)); e_wsfe(); /* L190: */ } } } else { *(unsigned char *)lab1 = 'N'; *(unsigned char *)lab2 = 'M'; } for (itran = 1; itran <= 2; ++itran) { i__1 = *nn; for (in = 1; in <= i__1; ++in) { i3 = 1; for (iuplo = 1; iuplo <= 2; ++iuplo) { io___51.ciunit = *nout; s_wsfe(&io___51); do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6); do_fio(&c__1, sides + (iside - 1), (ftnlen)1); do_fio(&c__1, uplos + (iuplo - 1), (ftnlen)1); do_fio(&c__1, transs + (itran - 1), (ftnlen)1); do_fio(&c__1, lab2, (ftnlen)1); do_fio(&c__1, (char *)&nval[in], (ftnlen)sizeof( integer)); e_wsfe(); sprtbl_("NB", lab1, nnb, &nbval[1], nm, &mval[1], nlda, &reslts_ref(1, 1, i3, i4 + in), ldr1, ldr2, nout, (ftnlen)2, (ftnlen)1); i3 += *nlda; /* L200: */ } /* L210: */ } i4 += *nn; /* L220: */ } /* L230: */ } } L240: /* Print a table of results for each timed routine. */ return 0; /* End of STIMTD */ } /* stimtd_ */ #undef reslts_ref #undef subnam_ref