#include "blaswrap.h" /* -- translated by f2c (version 19990503). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Common Block Declarations */ struct { integer infot, iounit; logical ok, lerr; } infoc_; #define infoc_1 infoc_ struct { char srnamt[6]; } srnamc_; #define srnamc_1 srnamc_ /* Table of constant values */ static doublecomplex c_b11 = {0.,0.}; static doublereal c_b16 = 1.; static integer c__1 = 1; /* Subroutine */ int zchkqp_(logical *dotype, integer *nm, integer *mval, integer *nn, integer *nval, doublereal *thresh, logical *tsterr, doublecomplex *a, doublecomplex *copya, doublereal *s, doublereal * copys, doublecomplex *tau, doublecomplex *work, doublereal *rwork, integer *iwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; /* Format strings */ static char fmt_9999[] = "(\002 M =\002,i5,\002, N =\002,i5,\002, type" " \002,i2,\002, test \002,i2,\002, ratio =\002,g12.5)"; /* System generated locals */ integer i__1, i__2, i__3, i__4; doublereal d__1; /* Builtin functions Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Local variables */ static integer mode, info; static char path[3]; static integer ilow, nrun, i__; extern /* Subroutine */ int alahd_(integer *, char *); static integer k, m, n, ihigh, nfail, iseed[4], imode, mnmin, istep, nerrs, lwork; extern doublereal zqpt01_(integer *, integer *, integer *, doublecomplex * , doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *), zqrt11_(integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *), zqrt12_(integer *, integer *, doublecomplex *, integer *, doublereal *, doublecomplex *, integer *, doublereal *) ; static integer im, in; extern doublereal dlamch_(char *); extern /* Subroutine */ int dlaord_(char *, integer *, doublereal *, integer *), alasum_(char *, integer *, integer *, integer *, integer *), zgeqpf_(integer *, integer *, doublecomplex *, integer *, integer *, doublecomplex *, doublecomplex *, doublereal *, integer *), zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *), zlaset_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *), zlatms_(integer *, integer *, char *, integer *, char *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, char *, doublecomplex *, integer *, doublecomplex *, integer *); static doublereal result[3]; extern /* Subroutine */ int zerrqp_(char *, integer *); static integer lda; static doublereal eps; /* Fortran I/O blocks */ static cilist io___24 = { 0, 0, 0, fmt_9999, 0 }; /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 Purpose ======= ZCHKQP tests ZGEQPF. Arguments ========= DOTYPE (input) LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. NM (input) INTEGER The number of values of M contained in the vector MVAL. MVAL (input) INTEGER array, dimension (NM) The values of the matrix row dimension M. NN (input) INTEGER The number of values of N contained in the vector NVAL. NVAL (input) INTEGER array, dimension (NN) The values of the matrix column dimension N. THRESH (input) DOUBLE PRECISION The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0. TSTERR (input) LOGICAL Flag that indicates whether error exits are to be tested. A (workspace) COMPLEX*16 array, dimension (MMAX*NMAX) where MMAX is the maximum value of M in MVAL and NMAX is the maximum value of N in NVAL. COPYA (workspace) COMPLEX*16 array, dimension (MMAX*NMAX) S (workspace) DOUBLE PRECISION array, dimension (min(MMAX,NMAX)) COPYS (workspace) DOUBLE PRECISION array, dimension (min(MMAX,NMAX)) TAU (workspace) COMPLEX*16 array, dimension (MMAX) WORK (workspace) COMPLEX*16 array, dimension (max(M*max(M,N) + 4*min(M,N) + max(M,N))) RWORK (workspace) DOUBLE PRECISION array, dimension (4*NMAX) IWORK (workspace) INTEGER array, dimension (NMAX) NOUT (input) INTEGER The unit number for output. ===================================================================== Parameter adjustments */ --iwork; --rwork; --work; --tau; --copys; --s; --copya; --a; --nval; --mval; --dotype; /* Function Body Initialize constants and the random number seed. */ s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "QP", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } eps = dlamch_("Epsilon"); /* Test the error exits */ if (*tsterr) { zerrqp_(path, nout); } infoc_1.infot = 0; i__1 = *nm; for (im = 1; im <= i__1; ++im) { /* Do for each value of M in MVAL. */ m = mval[im]; lda = max(1,m); i__2 = *nn; for (in = 1; in <= i__2; ++in) { /* Do for each value of N in NVAL. */ n = nval[in]; mnmin = min(m,n); /* Computing MAX */ i__3 = 1, i__4 = m * max(m,n) + (mnmin << 2) + max(m,n); lwork = max(i__3,i__4); for (imode = 1; imode <= 6; ++imode) { if (! dotype[imode]) { goto L60; } /* Do for each type of matrix 1: zero matrix 2: one small singular value 3: geometric distribution of singular values 4: first n/2 columns fixed 5: last n/2 columns fixed 6: every second column fixed */ mode = imode; if (imode > 3) { mode = 1; } /* Generate test matrix of size m by n using singular value distribution indicated by `mode'. */ i__3 = n; for (i__ = 1; i__ <= i__3; ++i__) { iwork[i__] = 0; /* L20: */ } if (imode == 1) { zlaset_("Full", &m, &n, &c_b11, &c_b11, ©a[1], &lda); i__3 = mnmin; for (i__ = 1; i__ <= i__3; ++i__) { copys[i__] = 0.; /* L30: */ } } else { d__1 = 1. / eps; zlatms_(&m, &n, "Uniform", iseed, "Nonsymm", ©s[1], & mode, &d__1, &c_b16, &m, &n, "No packing", ©a[ 1], &lda, &work[1], &info); if (imode >= 4) { if (imode == 4) { ilow = 1; istep = 1; /* Computing MAX */ i__3 = 1, i__4 = n / 2; ihigh = max(i__3,i__4); } else if (imode == 5) { /* Computing MAX */ i__3 = 1, i__4 = n / 2; ilow = max(i__3,i__4); istep = 1; ihigh = n; } else if (imode == 6) { ilow = 1; istep = 2; ihigh = n; } i__3 = ihigh; i__4 = istep; for (i__ = ilow; i__4 < 0 ? i__ >= i__3 : i__ <= i__3; i__ += i__4) { iwork[i__] = 1; /* L40: */ } } dlaord_("Decreasing", &mnmin, ©s[1], &c__1); } /* Save A and its singular values */ zlacpy_("All", &m, &n, ©a[1], &lda, &a[1], &lda); /* Compute the QR factorization with pivoting of A */ s_copy(srnamc_1.srnamt, "ZGEQPF", (ftnlen)6, (ftnlen)6); zgeqpf_(&m, &n, &a[1], &lda, &iwork[1], &tau[1], &work[1], & rwork[1], &info); /* Compute norm(svd(a) - svd(r)) */ result[0] = zqrt12_(&m, &n, &a[1], &lda, ©s[1], &work[1], &lwork, &rwork[1]); /* Compute norm( A*P - Q*R ) */ result[1] = zqpt01_(&m, &n, &mnmin, ©a[1], &a[1], &lda, & tau[1], &iwork[1], &work[1], &lwork); /* Compute Q'*Q */ result[2] = zqrt11_(&m, &mnmin, &a[1], &lda, &tau[1], &work[1] , &lwork); /* Print information about the tests that did not pass the threshold. */ for (k = 1; k <= 3; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___24.ciunit = *nout; s_wsfe(&io___24); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imode, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof( doublereal)); e_wsfe(); ++nfail; } /* L50: */ } nrun += 3; L60: ; } /* L70: */ } /* L80: */ } /* Print a summary of the results. */ alasum_(path, nout, &nfail, &nrun, &nerrs); /* End of ZCHKQP */ return 0; } /* zchkqp_ */