#include "blaswrap.h" /* -- translated by f2c (version 19990503). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Common Block Declarations */ struct { doublereal ops, itcnt; } latime_; #define latime_1 latime_ /* Table of constant values */ static doublecomplex c_b2 = {1.,0.}; static integer c__1 = 1; /* Subroutine */ int ztrevc_(char *side, char *howmny, logical *select, integer *n, doublecomplex *t, integer *ldt, doublecomplex *vl, integer *ldvl, doublecomplex *vr, integer *ldvr, integer *mm, integer *m, doublecomplex *work, doublereal *rwork, integer *info) { /* System generated locals */ integer t_dim1, t_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, i__2, i__3, i__4, i__5; doublereal d__1, d__2, d__3; doublecomplex z__1, z__2; /* Builtin functions */ double d_imag(doublecomplex *); void d_cnjg(doublecomplex *, doublecomplex *); /* Local variables */ static logical allv; static doublereal unfl, ovfl, smin; static logical over; static doublereal opst; static integer i__, j, k; static doublereal scale; extern logical lsame_(char *, char *); static doublereal remax; static logical leftv, bothv; extern /* Subroutine */ int zgemv_(char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *); static logical somev; extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, doublecomplex *, integer *), dlabad_(doublereal *, doublereal *); static integer ii, ki; extern doublereal dlamch_(char *); static integer is; extern /* Subroutine */ int xerbla_(char *, integer *), zdscal_( integer *, doublereal *, doublecomplex *, integer *); extern integer izamax_(integer *, doublecomplex *, integer *); static logical rightv; extern doublereal dzasum_(integer *, doublecomplex *, integer *); static doublereal smlnum; extern /* Subroutine */ int zlatrs_(char *, char *, char *, char *, integer *, doublecomplex *, integer *, doublecomplex *, doublereal *, doublereal *, integer *); static doublereal ulp; #define t_subscr(a_1,a_2) (a_2)*t_dim1 + a_1 #define t_ref(a_1,a_2) t[t_subscr(a_1,a_2)] #define vl_subscr(a_1,a_2) (a_2)*vl_dim1 + a_1 #define vl_ref(a_1,a_2) vl[vl_subscr(a_1,a_2)] #define vr_subscr(a_1,a_2) (a_2)*vr_dim1 + a_1 #define vr_ref(a_1,a_2) vr[vr_subscr(a_1,a_2)] /* -- LAPACK routine (instrumented to count operations, version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University June 30, 1999 Common block to return operation count. OPS is only incremented, OPST is used to accumulate small contributions to OPS to avoid roundoff error Purpose ======= ZTREVC computes some or all of the right and/or left eigenvectors of a complex upper triangular matrix T. The right eigenvector x and the left eigenvector y of T corresponding to an eigenvalue w are defined by: T*x = w*x, y'*T = w*y' where y' denotes the conjugate transpose of the vector y. If all eigenvectors are requested, the routine may either return the matrices X and/or Y of right or left eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an input unitary matrix. If T was obtained from the Schur factorization of an original matrix A = Q*T*Q', then Q*X and Q*Y are the matrices of right or left eigenvectors of A. Arguments ========= SIDE (input) CHARACTER*1 = 'R': compute right eigenvectors only; = 'L': compute left eigenvectors only; = 'B': compute both right and left eigenvectors. HOWMNY (input) CHARACTER*1 = 'A': compute all right and/or left eigenvectors; = 'B': compute all right and/or left eigenvectors, and backtransform them using the input matrices supplied in VR and/or VL; = 'S': compute selected right and/or left eigenvectors, specified by the logical array SELECT. SELECT (input) LOGICAL array, dimension (N) If HOWMNY = 'S', SELECT specifies the eigenvectors to be computed. If HOWMNY = 'A' or 'B', SELECT is not referenced. To select the eigenvector corresponding to the j-th eigenvalue, SELECT(j) must be set to .TRUE.. N (input) INTEGER The order of the matrix T. N >= 0. T (input/output) COMPLEX*16 array, dimension (LDT,N) The upper triangular matrix T. T is modified, but restored on exit. LDT (input) INTEGER The leading dimension of the array T. LDT >= max(1,N). VL (input/output) COMPLEX*16 array, dimension (LDVL,MM) On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must contain an N-by-N matrix Q (usually the unitary matrix Q of Schur vectors returned by ZHSEQR). On exit, if SIDE = 'L' or 'B', VL contains: if HOWMNY = 'A', the matrix Y of left eigenvectors of T; VL is lower triangular. The i-th column VL(i) of VL is the eigenvector corresponding to T(i,i). if HOWMNY = 'B', the matrix Q*Y; if HOWMNY = 'S', the left eigenvectors of T specified by SELECT, stored consecutively in the columns of VL, in the same order as their eigenvalues. If SIDE = 'R', VL is not referenced. LDVL (input) INTEGER The leading dimension of the array VL. LDVL >= max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 otherwise. VR (input/output) COMPLEX*16 array, dimension (LDVR,MM) On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must contain an N-by-N matrix Q (usually the unitary matrix Q of Schur vectors returned by ZHSEQR). On exit, if SIDE = 'R' or 'B', VR contains: if HOWMNY = 'A', the matrix X of right eigenvectors of T; VR is upper triangular. The i-th column VR(i) of VR is the eigenvector corresponding to T(i,i). if HOWMNY = 'B', the matrix Q*X; if HOWMNY = 'S', the right eigenvectors of T specified by SELECT, stored consecutively in the columns of VR, in the same order as their eigenvalues. If SIDE = 'L', VR is not referenced. LDVR (input) INTEGER The leading dimension of the array VR. LDVR >= max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise. MM (input) INTEGER The number of columns in the arrays VL and/or VR. MM >= M. M (output) INTEGER The number of columns in the arrays VL and/or VR actually used to store the eigenvectors. If HOWMNY = 'A' or 'B', M is set to N. Each selected eigenvector occupies one column. WORK (workspace) COMPLEX*16 array, dimension (2*N) RWORK (workspace) DOUBLE PRECISION array, dimension (N) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Further Details =============== The algorithm used in this program is basically backward (forward) substitution, with scaling to make the the code robust against possible overflow. Each eigenvector is normalized so that the element of largest magnitude has magnitude 1; here the magnitude of a complex number (x,y) is taken to be |x| + |y|. ===================================================================== Decode and test the input parameters Parameter adjustments */ --select; t_dim1 = *ldt; t_offset = 1 + t_dim1 * 1; t -= t_offset; vl_dim1 = *ldvl; vl_offset = 1 + vl_dim1 * 1; vl -= vl_offset; vr_dim1 = *ldvr; vr_offset = 1 + vr_dim1 * 1; vr -= vr_offset; --work; --rwork; /* Function Body */ bothv = lsame_(side, "B"); rightv = lsame_(side, "R") || bothv; leftv = lsame_(side, "L") || bothv; allv = lsame_(howmny, "A"); over = lsame_(howmny, "B"); somev = lsame_(howmny, "S"); /* Set M to the number of columns required to store the selected eigenvectors. */ if (somev) { *m = 0; i__1 = *n; for (j = 1; j <= i__1; ++j) { if (select[j]) { ++(*m); } /* L10: */ } } else { *m = *n; } *info = 0; if (! rightv && ! leftv) { *info = -1; } else if (! allv && ! over && ! somev) { *info = -2; } else if (*n < 0) { *info = -4; } else if (*ldt < max(1,*n)) { *info = -6; } else if (*ldvl < 1 || leftv && *ldvl < *n) { *info = -8; } else if (*ldvr < 1 || rightv && *ldvr < *n) { *info = -10; } else if (*mm < *m) { *info = -11; } if (*info != 0) { i__1 = -(*info); xerbla_("ZTREVC", &i__1); return 0; } /* Quick return if possible. */ if (*n == 0) { return 0; } /* ** Initialize */ opst = 0.; /* ** Set the constants to control overflow. */ unfl = dlamch_("Safe minimum"); ovfl = 1. / unfl; dlabad_(&unfl, &ovfl); ulp = dlamch_("Precision"); smlnum = unfl * (*n / ulp); /* Store the diagonal elements of T in working array WORK. */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__ + *n; i__3 = t_subscr(i__, i__); work[i__2].r = t[i__3].r, work[i__2].i = t[i__3].i; /* L20: */ } /* Compute 1-norm of each column of strictly upper triangular part of T to control overflow in triangular solver. */ rwork[1] = 0.; i__1 = *n; for (j = 2; j <= i__1; ++j) { i__2 = j - 1; rwork[j] = dzasum_(&i__2, &t_ref(1, j), &c__1); /* L30: */ } /* ** */ latime_1.ops += *n * (*n - 1); /* ** */ if (rightv) { /* Compute right eigenvectors. */ is = *m; for (ki = *n; ki >= 1; --ki) { if (somev) { if (! select[ki]) { goto L80; } } /* Computing MAX */ i__1 = t_subscr(ki, ki); d__3 = ulp * ((d__1 = t[i__1].r, abs(d__1)) + (d__2 = d_imag(& t_ref(ki, ki)), abs(d__2))); smin = max(d__3,smlnum); work[1].r = 1., work[1].i = 0.; /* Form right-hand side. */ i__1 = ki - 1; for (k = 1; k <= i__1; ++k) { i__2 = k; i__3 = t_subscr(k, ki); z__1.r = -t[i__3].r, z__1.i = -t[i__3].i; work[i__2].r = z__1.r, work[i__2].i = z__1.i; /* L40: */ } /* Solve the triangular system: (T(1:KI-1,1:KI-1) - T(KI,KI))*X = SCALE*WORK. */ i__1 = ki - 1; for (k = 1; k <= i__1; ++k) { i__2 = t_subscr(k, k); i__3 = t_subscr(k, k); i__4 = t_subscr(ki, ki); z__1.r = t[i__3].r - t[i__4].r, z__1.i = t[i__3].i - t[i__4] .i; t[i__2].r = z__1.r, t[i__2].i = z__1.i; i__2 = t_subscr(k, k); if ((d__1 = t[i__2].r, abs(d__1)) + (d__2 = d_imag(&t_ref(k, k)), abs(d__2)) < smin) { i__3 = t_subscr(k, k); t[i__3].r = smin, t[i__3].i = 0.; } /* L50: */ } /* ** */ opst += ki - 1 << 1; /* ** */ if (ki > 1) { i__1 = ki - 1; zlatrs_("Upper", "No transpose", "Non-unit", "Y", &i__1, &t[ t_offset], ldt, &work[1], &scale, &rwork[1], info); i__1 = ki; work[i__1].r = scale, work[i__1].i = 0.; } /* ** Increment opcount for triangular solver, assuming that ops ZLATRS = ops ZTRSV, with no scaling in CLATRS. */ latime_1.ops += (ki << 2) * (ki - 1); /* ** Copy the vector x or Q*x to VR and normalize. */ if (! over) { zcopy_(&ki, &work[1], &c__1, &vr_ref(1, is), &c__1); ii = izamax_(&ki, &vr_ref(1, is), &c__1); i__1 = vr_subscr(ii, is); remax = 1. / ((d__1 = vr[i__1].r, abs(d__1)) + (d__2 = d_imag( &vr_ref(ii, is)), abs(d__2))); zdscal_(&ki, &remax, &vr_ref(1, is), &c__1); /* ** */ opst += (ki << 2) + 3; /* ** */ i__1 = *n; for (k = ki + 1; k <= i__1; ++k) { i__2 = vr_subscr(k, is); vr[i__2].r = 0., vr[i__2].i = 0.; /* L60: */ } } else { if (ki > 1) { i__1 = ki - 1; z__1.r = scale, z__1.i = 0.; zgemv_("N", n, &i__1, &c_b2, &vr[vr_offset], ldvr, &work[ 1], &c__1, &z__1, &vr_ref(1, ki), &c__1); } ii = izamax_(n, &vr_ref(1, ki), &c__1); i__1 = vr_subscr(ii, ki); remax = 1. / ((d__1 = vr[i__1].r, abs(d__1)) + (d__2 = d_imag( &vr_ref(ii, ki)), abs(d__2))); zdscal_(n, &remax, &vr_ref(1, ki), &c__1); /* ** */ latime_1.ops += (*n << 3) * (ki - 1) + *n * 10 + 3; /* ** */ } /* Set back the original diagonal elements of T. */ i__1 = ki - 1; for (k = 1; k <= i__1; ++k) { i__2 = t_subscr(k, k); i__3 = k + *n; t[i__2].r = work[i__3].r, t[i__2].i = work[i__3].i; /* L70: */ } --is; L80: ; } } if (leftv) { /* Compute left eigenvectors. */ is = 1; i__1 = *n; for (ki = 1; ki <= i__1; ++ki) { if (somev) { if (! select[ki]) { goto L130; } } /* Computing MAX */ i__2 = t_subscr(ki, ki); d__3 = ulp * ((d__1 = t[i__2].r, abs(d__1)) + (d__2 = d_imag(& t_ref(ki, ki)), abs(d__2))); smin = max(d__3,smlnum); i__2 = *n; work[i__2].r = 1., work[i__2].i = 0.; /* Form right-hand side. */ i__2 = *n; for (k = ki + 1; k <= i__2; ++k) { i__3 = k; d_cnjg(&z__2, &t_ref(ki, k)); z__1.r = -z__2.r, z__1.i = -z__2.i; work[i__3].r = z__1.r, work[i__3].i = z__1.i; /* L90: */ } /* Solve the triangular system: (T(KI+1:N,KI+1:N) - T(KI,KI))'*X = SCALE*WORK. */ i__2 = *n; for (k = ki + 1; k <= i__2; ++k) { i__3 = t_subscr(k, k); i__4 = t_subscr(k, k); i__5 = t_subscr(ki, ki); z__1.r = t[i__4].r - t[i__5].r, z__1.i = t[i__4].i - t[i__5] .i; t[i__3].r = z__1.r, t[i__3].i = z__1.i; i__3 = t_subscr(k, k); if ((d__1 = t[i__3].r, abs(d__1)) + (d__2 = d_imag(&t_ref(k, k)), abs(d__2)) < smin) { i__4 = t_subscr(k, k); t[i__4].r = smin, t[i__4].i = 0.; } /* L100: */ } /* ** */ opst += *n - ki << 1; /* ** */ if (ki < *n) { i__2 = *n - ki; zlatrs_("Upper", "Conjugate transpose", "Non-unit", "Y", & i__2, &t_ref(ki + 1, ki + 1), ldt, &work[ki + 1], & scale, &rwork[1], info); i__2 = ki; work[i__2].r = scale, work[i__2].i = 0.; } /* ** Increment opcount for triangular solver, assuming that ops ZLATRS = ops ZTRSV, with no scaling in CLATRS. */ latime_1.ops += (*n - ki << 2) * (*n - ki + 1); /* ** Copy the vector x or Q*x to VL and normalize. */ if (! over) { i__2 = *n - ki + 1; zcopy_(&i__2, &work[ki], &c__1, &vl_ref(ki, is), &c__1); i__2 = *n - ki + 1; ii = izamax_(&i__2, &vl_ref(ki, is), &c__1) + ki - 1; i__2 = vl_subscr(ii, is); remax = 1. / ((d__1 = vl[i__2].r, abs(d__1)) + (d__2 = d_imag( &vl_ref(ii, is)), abs(d__2))); i__2 = *n - ki + 1; zdscal_(&i__2, &remax, &vl_ref(ki, is), &c__1); /* ** */ opst += (*n - ki + 1 << 2) + 3; /* ** */ i__2 = ki - 1; for (k = 1; k <= i__2; ++k) { i__3 = vl_subscr(k, is); vl[i__3].r = 0., vl[i__3].i = 0.; /* L110: */ } } else { if (ki < *n) { i__2 = *n - ki; z__1.r = scale, z__1.i = 0.; zgemv_("N", n, &i__2, &c_b2, &vl_ref(1, ki + 1), ldvl, & work[ki + 1], &c__1, &z__1, &vl_ref(1, ki), &c__1); } ii = izamax_(n, &vl_ref(1, ki), &c__1); i__2 = vl_subscr(ii, ki); remax = 1. / ((d__1 = vl[i__2].r, abs(d__1)) + (d__2 = d_imag( &vl_ref(ii, ki)), abs(d__2))); zdscal_(n, &remax, &vl_ref(1, ki), &c__1); /* ** */ latime_1.ops += (*n << 3) * (*n - ki) + *n * 10 + 3; /* ** */ } /* Set back the original diagonal elements of T. */ i__2 = *n; for (k = ki + 1; k <= i__2; ++k) { i__3 = t_subscr(k, k); i__4 = k + *n; t[i__3].r = work[i__4].r, t[i__3].i = work[i__4].i; /* L120: */ } ++is; L130: ; } } /* ** Compute final op count */ latime_1.ops += opst; /* ** */ return 0; /* End of ZTREVC */ } /* ztrevc_ */ #undef vr_ref #undef vr_subscr #undef vl_ref #undef vl_subscr #undef t_ref #undef t_subscr