#include "blaswrap.h" /* -- translated by f2c (version 19990503). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Common Block Declarations */ struct { doublereal ops, itcnt; } latime_; #define latime_1 latime_ /* Table of constant values */ static doublereal c_b3 = -1.; static integer c__1 = 1; /* Subroutine */ int dlaed2_(integer *k, integer *n, integer *n1, doublereal * d__, doublereal *q, integer *ldq, integer *indxq, doublereal *rho, doublereal *z__, doublereal *dlamda, doublereal *w, doublereal *q2, integer *indx, integer *indxc, integer *indxp, integer *coltyp, integer *info) { /* System generated locals */ integer q_dim1, q_offset, i__1, i__2; doublereal d__1, d__2, d__3, d__4; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ static integer imax, jmax; extern /* Subroutine */ int drot_(integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *); static integer ctot[4]; static doublereal c__; static integer i__, j; static doublereal s, t; extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, integer *), dcopy_(integer *, doublereal *, integer *, doublereal *, integer *); static integer k2, n2; extern doublereal dlapy2_(doublereal *, doublereal *); static integer ct, nj; extern doublereal dlamch_(char *); static integer pj, js; extern integer idamax_(integer *, doublereal *, integer *); extern /* Subroutine */ int dlamrg_(integer *, integer *, doublereal *, integer *, integer *, integer *), dlacpy_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *), xerbla_(char *, integer *); static integer iq1, iq2, n1p1; static doublereal eps, tau, tol; static integer psm[4]; #define q_ref(a_1,a_2) q[(a_2)*q_dim1 + a_1] /* -- LAPACK routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University October 31, 1999 Common block to return operation count and iteration count ITCNT is unchanged, OPS is only incremented Purpose ======= DLAED2 merges the two sets of eigenvalues together into a single sorted set. Then it tries to deflate the size of the problem. There are two ways in which deflation can occur: when two or more eigenvalues are close together or if there is a tiny entry in the Z vector. For each such occurrence the order of the related secular equation problem is reduced by one. Arguments ========= K (output) INTEGER The number of non-deflated eigenvalues, and the order of the related secular equation. 0 <= K <=N. N (input) INTEGER The dimension of the symmetric tridiagonal matrix. N >= 0. N1 (input) INTEGER The location of the last eigenvalue in the leading sub-matrix. min(1,N) <= N1 <= N/2. D (input/output) DOUBLE PRECISION array, dimension (N) On entry, D contains the eigenvalues of the two submatrices to be combined. On exit, D contains the trailing (N-K) updated eigenvalues (those which were deflated) sorted into increasing order. Q (input/output) DOUBLE PRECISION array, dimension (LDQ, N) On entry, Q contains the eigenvectors of two submatrices in the two square blocks with corners at (1,1), (N1,N1) and (N1+1, N1+1), (N,N). On exit, Q contains the trailing (N-K) updated eigenvectors (those which were deflated) in its last N-K columns. LDQ (input) INTEGER The leading dimension of the array Q. LDQ >= max(1,N). INDXQ (input/output) INTEGER array, dimension (N) The permutation which separately sorts the two sub-problems in D into ascending order. Note that elements in the second half of this permutation must first have N1 added to their values. Destroyed on exit. RHO (input/output) DOUBLE PRECISION On entry, the off-diagonal element associated with the rank-1 cut which originally split the two submatrices which are now being recombined. On exit, RHO has been modified to the value required by DLAED3. Z (input) DOUBLE PRECISION array, dimension (N) On entry, Z contains the updating vector (the last row of the first sub-eigenvector matrix and the first row of the second sub-eigenvector matrix). On exit, the contents of Z have been destroyed by the updating process. DLAMDA (output) DOUBLE PRECISION array, dimension (N) A copy of the first K eigenvalues which will be used by DLAED3 to form the secular equation. W (output) DOUBLE PRECISION array, dimension (N) The first k values of the final deflation-altered z-vector which will be passed to DLAED3. Q2 (output) DOUBLE PRECISION array, dimension (N1**2+(N-N1)**2) A copy of the first K eigenvectors which will be used by DLAED3 in a matrix multiply (DGEMM) to solve for the new eigenvectors. INDX (workspace) INTEGER array, dimension (N) The permutation used to sort the contents of DLAMDA into ascending order. INDXC (output) INTEGER array, dimension (N) The permutation used to arrange the columns of the deflated Q matrix into three groups: the first group contains non-zero elements only at and above N1, the second contains non-zero elements only below N1, and the third is dense. INDXP (workspace) INTEGER array, dimension (N) The permutation used to place deflated values of D at the end of the array. INDXP(1:K) points to the nondeflated D-values and INDXP(K+1:N) points to the deflated eigenvalues. COLTYP (workspace/output) INTEGER array, dimension (N) During execution, a label which will indicate which of the following types a column in the Q2 matrix is: 1 : non-zero in the upper half only; 2 : dense; 3 : non-zero in the lower half only; 4 : deflated. On exit, COLTYP(i) is the number of columns of type i, for i=1 to 4 only. INFO (output) INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. Further Details =============== Based on contributions by Jeff Rutter, Computer Science Division, University of California at Berkeley, USA Modified by Francoise Tisseur, University of Tennessee. ===================================================================== Test the input parameters. Parameter adjustments */ --d__; q_dim1 = *ldq; q_offset = 1 + q_dim1 * 1; q -= q_offset; --indxq; --z__; --dlamda; --w; --q2; --indx; --indxc; --indxp; --coltyp; /* Function Body */ *info = 0; if (*n < 0) { *info = -2; } else if (*ldq < max(1,*n)) { *info = -6; } else /* if(complicated condition) */ { /* Computing MIN */ i__1 = 1, i__2 = *n / 2; if (min(i__1,i__2) > *n1 || *n / 2 < *n1) { *info = -3; } } if (*info != 0) { i__1 = -(*info); xerbla_("DLAED2", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } n2 = *n - *n1; n1p1 = *n1 + 1; if (*rho < 0.) { latime_1.ops += n2; dscal_(&n2, &c_b3, &z__[n1p1], &c__1); } /* Normalize z so that norm(z) = 1. Since z is the concatenation of two normalized vectors, norm2(z) = sqrt(2). */ latime_1.ops = latime_1.ops + *n + 3; t = 1. / sqrt(2.); dscal_(n, &t, &z__[1], &c__1); /* RHO = ABS( norm(z)**2 * RHO ) */ *rho = (d__1 = *rho * 2., abs(d__1)); /* Sort the eigenvalues into increasing order */ i__1 = *n; for (i__ = n1p1; i__ <= i__1; ++i__) { indxq[i__] += *n1; /* L10: */ } /* re-integrate the deflated parts from the last pass */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { dlamda[i__] = d__[indxq[i__]]; /* L20: */ } dlamrg_(n1, &n2, &dlamda[1], &c__1, &c__1, &indxc[1]); i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { indx[i__] = indxq[indxc[i__]]; /* L30: */ } /* Calculate the allowable deflation tolerance */ imax = idamax_(n, &z__[1], &c__1); jmax = idamax_(n, &d__[1], &c__1); eps = dlamch_("Epsilon"); latime_1.ops += 2; /* Computing MAX */ d__3 = (d__1 = d__[jmax], abs(d__1)), d__4 = (d__2 = z__[imax], abs(d__2)) ; tol = eps * 8. * max(d__3,d__4); /* If the rank-1 modifier is small enough, no more needs to be done except to reorganize Q so that its columns correspond with the elements in D. */ latime_1.ops += 1; if (*rho * (d__1 = z__[imax], abs(d__1)) <= tol) { *k = 0; iq2 = 1; i__1 = *n; for (j = 1; j <= i__1; ++j) { i__ = indx[j]; dcopy_(n, &q_ref(1, i__), &c__1, &q2[iq2], &c__1); dlamda[j] = d__[i__]; iq2 += *n; /* L40: */ } dlacpy_("A", n, n, &q2[1], n, &q[q_offset], ldq); dcopy_(n, &dlamda[1], &c__1, &d__[1], &c__1); goto L190; } /* If there are multiple eigenvalues then the problem deflates. Here the number of equal eigenvalues are found. As each equal eigenvalue is found, an elementary reflector is computed to rotate the corresponding eigensubspace so that the corresponding components of Z are zero in this new basis. */ i__1 = *n1; for (i__ = 1; i__ <= i__1; ++i__) { coltyp[i__] = 1; /* L50: */ } i__1 = *n; for (i__ = n1p1; i__ <= i__1; ++i__) { coltyp[i__] = 3; /* L60: */ } *k = 0; k2 = *n + 1; i__1 = *n; for (j = 1; j <= i__1; ++j) { nj = indx[j]; latime_1.ops += 1; if (*rho * (d__1 = z__[nj], abs(d__1)) <= tol) { /* Deflate due to small z component. */ --k2; coltyp[nj] = 4; indxp[k2] = nj; if (j == *n) { goto L100; } } else { pj = nj; goto L80; } /* L70: */ } L80: ++j; nj = indx[j]; if (j > *n) { goto L100; } latime_1.ops += 1; if (*rho * (d__1 = z__[nj], abs(d__1)) <= tol) { /* Deflate due to small z component. */ --k2; coltyp[nj] = 4; indxp[k2] = nj; } else { /* Check if eigenvalues are close enough to allow deflation. */ s = z__[pj]; c__ = z__[nj]; /* Find sqrt(a**2+b**2) without overflow or destructive underflow. */ latime_1.ops += 10; tau = dlapy2_(&c__, &s); t = d__[nj] - d__[pj]; c__ /= tau; s = -s / tau; if ((d__1 = t * c__ * s, abs(d__1)) <= tol) { /* Deflation is possible. */ z__[nj] = tau; z__[pj] = 0.; if (coltyp[nj] != coltyp[pj]) { coltyp[nj] = 2; } coltyp[pj] = 4; latime_1.ops += *n * 6; drot_(n, &q_ref(1, pj), &c__1, &q_ref(1, nj), &c__1, &c__, &s); latime_1.ops += 10; /* Computing 2nd power */ d__1 = c__; /* Computing 2nd power */ d__2 = s; t = d__[pj] * (d__1 * d__1) + d__[nj] * (d__2 * d__2); /* Computing 2nd power */ d__1 = s; /* Computing 2nd power */ d__2 = c__; d__[nj] = d__[pj] * (d__1 * d__1) + d__[nj] * (d__2 * d__2); d__[pj] = t; --k2; i__ = 1; L90: if (k2 + i__ <= *n) { if (d__[pj] < d__[indxp[k2 + i__]]) { indxp[k2 + i__ - 1] = indxp[k2 + i__]; indxp[k2 + i__] = pj; ++i__; goto L90; } else { indxp[k2 + i__ - 1] = pj; } } else { indxp[k2 + i__ - 1] = pj; } pj = nj; } else { ++(*k); dlamda[*k] = d__[pj]; w[*k] = z__[pj]; indxp[*k] = pj; pj = nj; } } goto L80; L100: /* Record the last eigenvalue. */ ++(*k); dlamda[*k] = d__[pj]; w[*k] = z__[pj]; indxp[*k] = pj; /* Count up the total number of the various types of columns, then form a permutation which positions the four column types into four uniform groups (although one or more of these groups may be empty). */ for (j = 1; j <= 4; ++j) { ctot[j - 1] = 0; /* L110: */ } i__1 = *n; for (j = 1; j <= i__1; ++j) { ct = coltyp[j]; ++ctot[ct - 1]; /* L120: */ } /* PSM(*) = Position in SubMatrix (of types 1 through 4) */ psm[0] = 1; psm[1] = ctot[0] + 1; psm[2] = psm[1] + ctot[1]; psm[3] = psm[2] + ctot[2]; *k = *n - ctot[3]; /* Fill out the INDXC array so that the permutation which it induces will place all type-1 columns first, all type-2 columns next, then all type-3's, and finally all type-4's. */ i__1 = *n; for (j = 1; j <= i__1; ++j) { js = indxp[j]; ct = coltyp[js]; indx[psm[ct - 1]] = js; indxc[psm[ct - 1]] = j; ++psm[ct - 1]; /* L130: */ } /* Sort the eigenvalues and corresponding eigenvectors into DLAMDA and Q2 respectively. The eigenvalues/vectors which were not deflated go into the first K slots of DLAMDA and Q2 respectively, while those which were deflated go into the last N - K slots. */ i__ = 1; iq1 = 1; iq2 = (ctot[0] + ctot[1]) * *n1 + 1; i__1 = ctot[0]; for (j = 1; j <= i__1; ++j) { js = indx[i__]; dcopy_(n1, &q_ref(1, js), &c__1, &q2[iq1], &c__1); z__[i__] = d__[js]; ++i__; iq1 += *n1; /* L140: */ } i__1 = ctot[1]; for (j = 1; j <= i__1; ++j) { js = indx[i__]; dcopy_(n1, &q_ref(1, js), &c__1, &q2[iq1], &c__1); dcopy_(&n2, &q_ref(*n1 + 1, js), &c__1, &q2[iq2], &c__1); z__[i__] = d__[js]; ++i__; iq1 += *n1; iq2 += n2; /* L150: */ } i__1 = ctot[2]; for (j = 1; j <= i__1; ++j) { js = indx[i__]; dcopy_(&n2, &q_ref(*n1 + 1, js), &c__1, &q2[iq2], &c__1); z__[i__] = d__[js]; ++i__; iq2 += n2; /* L160: */ } iq1 = iq2; i__1 = ctot[3]; for (j = 1; j <= i__1; ++j) { js = indx[i__]; dcopy_(n, &q_ref(1, js), &c__1, &q2[iq2], &c__1); iq2 += *n; z__[i__] = d__[js]; ++i__; /* L170: */ } /* The deflated eigenvalues and their corresponding vectors go back into the last N - K slots of D and Q respectively. */ dlacpy_("A", n, &ctot[3], &q2[iq1], n, &q_ref(1, *k + 1), ldq); i__1 = *n - *k; dcopy_(&i__1, &z__[*k + 1], &c__1, &d__[*k + 1], &c__1); /* Copy CTOT into COLTYP for referencing in DLAED3. */ for (j = 1; j <= 4; ++j) { coltyp[j] = ctot[j - 1]; /* L180: */ } L190: return 0; /* End of DLAED2 */ } /* dlaed2_ */ #undef q_ref