#include "blaswrap.h" /* -- translated by f2c (version 19990503). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Table of constant values */ static integer c__3 = 3; /* Subroutine */ int clatm1_(integer *mode, real *cond, integer *irsign, integer *idist, integer *iseed, complex *d__, integer *n, integer * info) { /* System generated locals */ integer i__1, i__2, i__3; real r__1; doublereal d__1, d__2; complex q__1, q__2; /* Builtin functions */ double pow_dd(doublereal *, doublereal *), pow_ri(real *, integer *), log( doublereal), exp(doublereal), c_abs(complex *); /* Local variables */ static real temp; static integer i__; static real alpha; static complex ctemp; extern /* Complex */ VOID clarnd_(complex *, integer *, integer *); extern /* Subroutine */ int xerbla_(char *, integer *); extern doublereal slaran_(integer *); extern /* Subroutine */ int clarnv_(integer *, integer *, integer *, complex *); /* -- LAPACK auxiliary test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 Purpose ======= CLATM1 computes the entries of D(1..N) as specified by MODE, COND and IRSIGN. IDIST and ISEED determine the generation of random numbers. CLATM1 is called by CLATMR to generate random test matrices for LAPACK programs. Arguments ========= MODE - INTEGER On entry describes how D is to be computed: MODE = 0 means do not change D. MODE = 1 sets D(1)=1 and D(2:N)=1.0/COND MODE = 2 sets D(1:N-1)=1 and D(N)=1.0/COND MODE = 3 sets D(I)=COND**(-(I-1)/(N-1)) MODE = 4 sets D(i)=1 - (i-1)/(N-1)*(1 - 1/COND) MODE = 5 sets D to random numbers in the range ( 1/COND , 1 ) such that their logarithms are uniformly distributed. MODE = 6 set D to random numbers from same distribution as the rest of the matrix. MODE < 0 has the same meaning as ABS(MODE), except that the order of the elements of D is reversed. Thus if MODE is positive, D has entries ranging from 1 to 1/COND, if negative, from 1/COND to 1, Not modified. COND - REAL On entry, used as described under MODE above. If used, it must be >= 1. Not modified. IRSIGN - INTEGER On entry, if MODE neither -6, 0 nor 6, determines sign of entries of D 0 => leave entries of D unchanged 1 => multiply each entry of D by random complex number uniformly distributed with absolute value 1 IDIST - CHARACTER*1 On entry, IDIST specifies the type of distribution to be used to generate a random matrix . 1 => real and imaginary parts each UNIFORM( 0, 1 ) 2 => real and imaginary parts each UNIFORM( -1, 1 ) 3 => real and imaginary parts each NORMAL( 0, 1 ) 4 => complex number uniform in DISK( 0, 1 ) Not modified. ISEED - INTEGER array, dimension ( 4 ) On entry ISEED specifies the seed of the random number generator. The random number generator uses a linear congruential sequence limited to small integers, and so should produce machine independent random numbers. The values of ISEED are changed on exit, and can be used in the next call to CLATM1 to continue the same random number sequence. Changed on exit. D - COMPLEX array, dimension ( MIN( M , N ) ) Array to be computed according to MODE, COND and IRSIGN. May be changed on exit if MODE is nonzero. N - INTEGER Number of entries of D. Not modified. INFO - INTEGER 0 => normal termination -1 => if MODE not in range -6 to 6 -2 => if MODE neither -6, 0 nor 6, and IRSIGN neither 0 nor 1 -3 => if MODE neither -6, 0 nor 6 and COND less than 1 -4 => if MODE equals 6 or -6 and IDIST not in range 1 to 4 -7 => if N negative ===================================================================== Decode and Test the input parameters. Initialize flags & seed. Parameter adjustments */ --d__; --iseed; /* Function Body */ *info = 0; /* Quick return if possible */ if (*n == 0) { return 0; } /* Set INFO if an error */ if (*mode < -6 || *mode > 6) { *info = -1; } else if (*mode != -6 && *mode != 0 && *mode != 6 && (*irsign != 0 && * irsign != 1)) { *info = -2; } else if (*mode != -6 && *mode != 0 && *mode != 6 && *cond < 1.f) { *info = -3; } else if ((*mode == 6 || *mode == -6) && (*idist < 1 || *idist > 4)) { *info = -4; } else if (*n < 0) { *info = -7; } if (*info != 0) { i__1 = -(*info); xerbla_("CLATM1", &i__1); return 0; } /* Compute D according to COND and MODE */ if (*mode != 0) { switch (abs(*mode)) { case 1: goto L10; case 2: goto L30; case 3: goto L50; case 4: goto L70; case 5: goto L90; case 6: goto L110; } /* One large D value: */ L10: i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__; r__1 = 1.f / *cond; d__[i__2].r = r__1, d__[i__2].i = 0.f; /* L20: */ } d__[1].r = 1.f, d__[1].i = 0.f; goto L120; /* One small D value: */ L30: i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__; d__[i__2].r = 1.f, d__[i__2].i = 0.f; /* L40: */ } i__1 = *n; r__1 = 1.f / *cond; d__[i__1].r = r__1, d__[i__1].i = 0.f; goto L120; /* Exponentially distributed D values: */ L50: d__[1].r = 1.f, d__[1].i = 0.f; if (*n > 1) { d__1 = (doublereal) (*cond); d__2 = (doublereal) (-1.f / (real) (*n - 1)); alpha = pow_dd(&d__1, &d__2); i__1 = *n; for (i__ = 2; i__ <= i__1; ++i__) { i__2 = i__; i__3 = i__ - 1; r__1 = pow_ri(&alpha, &i__3); d__[i__2].r = r__1, d__[i__2].i = 0.f; /* L60: */ } } goto L120; /* Arithmetically distributed D values: */ L70: d__[1].r = 1.f, d__[1].i = 0.f; if (*n > 1) { temp = 1.f / *cond; alpha = (1.f - temp) / (real) (*n - 1); i__1 = *n; for (i__ = 2; i__ <= i__1; ++i__) { i__2 = i__; r__1 = (real) (*n - i__) * alpha + temp; d__[i__2].r = r__1, d__[i__2].i = 0.f; /* L80: */ } } goto L120; /* Randomly distributed D values on ( 1/COND , 1): */ L90: alpha = log(1.f / *cond); i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__; r__1 = exp(alpha * slaran_(&iseed[1])); d__[i__2].r = r__1, d__[i__2].i = 0.f; /* L100: */ } goto L120; /* Randomly distributed D values from IDIST */ L110: clarnv_(idist, &iseed[1], n, &d__[1]); L120: /* If MODE neither -6 nor 0 nor 6, and IRSIGN = 1, assign random signs to D */ if (*mode != -6 && *mode != 0 && *mode != 6 && *irsign == 1) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { clarnd_(&q__1, &c__3, &iseed[1]); ctemp.r = q__1.r, ctemp.i = q__1.i; i__2 = i__; i__3 = i__; r__1 = c_abs(&ctemp); q__2.r = ctemp.r / r__1, q__2.i = ctemp.i / r__1; q__1.r = d__[i__3].r * q__2.r - d__[i__3].i * q__2.i, q__1.i = d__[i__3].r * q__2.i + d__[i__3].i * q__2.r; d__[i__2].r = q__1.r, d__[i__2].i = q__1.i; /* L130: */ } } /* Reverse if MODE < 0 */ if (*mode < 0) { i__1 = *n / 2; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__; ctemp.r = d__[i__2].r, ctemp.i = d__[i__2].i; i__2 = i__; i__3 = *n + 1 - i__; d__[i__2].r = d__[i__3].r, d__[i__2].i = d__[i__3].i; i__2 = *n + 1 - i__; d__[i__2].r = ctemp.r, d__[i__2].i = ctemp.i; /* L140: */ } } } return 0; /* End of CLATM1 */ } /* clatm1_ */