#include "blaswrap.h" /* -- translated by f2c (version 19990503). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Common Block Declarations */ struct { integer selopt, seldim; logical selval[20]; doublereal selwr[20], selwi[20]; } sslct_; #define sslct_1 sslct_ /* Table of constant values */ static doublecomplex c_b1 = {0.,0.}; static doublecomplex c_b2 = {1.,0.}; static integer c__0 = 0; static integer c__4 = 4; static integer c__6 = 6; static doublereal c_b38 = 1.; static integer c__1 = 1; static doublereal c_b48 = 0.; static integer c__2 = 2; /* Subroutine */ int zdrves_(integer *nsizes, integer *nn, integer *ntypes, logical *dotype, integer *iseed, doublereal *thresh, integer *nounit, doublecomplex *a, integer *lda, doublecomplex *h__, doublecomplex *ht, doublecomplex *w, doublecomplex *wt, doublecomplex *vs, integer * ldvs, doublereal *result, doublecomplex *work, integer *nwork, doublereal *rwork, integer *iwork, logical *bwork, integer *info) { /* Initialized data */ static integer ktype[21] = { 1,2,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,9,9,9 }; static integer kmagn[21] = { 1,1,1,1,1,1,2,3,1,1,1,1,1,1,1,1,2,3,1,2,3 }; static integer kmode[21] = { 0,0,0,4,3,1,4,4,4,3,1,5,4,3,1,5,5,5,4,3,1 }; static integer kconds[21] = { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,0,0,0 }; /* Format strings */ static char fmt_9992[] = "(\002 ZDRVES: \002,a,\002 returned INFO=\002,i" "6,\002.\002,/9x,\002N=\002,i6,\002, JTYPE=\002,i6,\002, ISEED=" "(\002,3(i5,\002,\002),i5,\002)\002)"; static char fmt_9999[] = "(/1x,a3,\002 -- Complex Schur Form Decompositi" "on Driver\002,/\002 Matrix types (see ZDRVES for details): \002)"; static char fmt_9998[] = "(/\002 Special Matrices:\002,/\002 1=Zero mat" "rix. \002,\002 \002,\002 5=Diagonal: geom" "etr. spaced entries.\002,/\002 2=Identity matrix. " " \002,\002 6=Diagona\002,\002l: clustered entries.\002," "/\002 3=Transposed Jordan block. \002,\002 \002,\002 " " 7=Diagonal: large, evenly spaced.\002,/\002 \002,\0024=Diagona" "l: evenly spaced entries. \002,\002 8=Diagonal: s\002,\002ma" "ll, evenly spaced.\002)"; static char fmt_9997[] = "(\002 Dense, Non-Symmetric Matrices:\002,/\002" " 9=Well-cond., ev\002,\002enly spaced eigenvals.\002,\002 14=Il" "l-cond., geomet. spaced e\002,\002igenals.\002,/\002 10=Well-con" "d., geom. spaced eigenvals. \002,\002 15=Ill-conditioned, cluste" "red e.vals.\002,/\002 11=Well-cond\002,\002itioned, clustered e." "vals. \002,\002 16=Ill-cond., random comp\002,\002lex \002,a6," "/\002 12=Well-cond., random complex \002,a6,\002 \002,\002 17=" "Ill-cond., large rand. complx \002,a4,/\002 13=Ill-condi\002," "\002tioned, evenly spaced. \002,\002 18=Ill-cond., small ran" "d.\002,\002 complx \002,a4)"; static char fmt_9996[] = "(\002 19=Matrix with random O(1) entries. " " \002,\002 21=Matrix \002,\002with small random entries.\002," "/\002 20=Matrix with large ran\002,\002dom entries. \002,/)"; static char fmt_9995[] = "(\002 Tests performed with test threshold =" "\002,f8.2,/\002 ( A denotes A on input and T denotes A on output)" "\002,//\002 1 = 0 if T in Schur form (no sort), \002,\002 1/ulp" " otherwise\002,/\002 2 = | A - VS T transpose(VS) | / ( n |A| ul" "p ) (no sort)\002,/\002 3 = | I - VS transpose(VS) | / ( n ulp )" " (no sort) \002,/\002 4 = 0 if W are eigenvalues of T (no sort)" ",\002,\002 1/ulp otherwise\002,/\002 5 = 0 if T same no matter " "if VS computed (no sort),\002,\002 1/ulp otherwise\002,/\002 6 " "= 0 if W same no matter if VS computed (no sort)\002,\002, 1/ul" "p otherwise\002)"; static char fmt_9994[] = "(\002 7 = 0 if T in Schur form (sort), \002" ",\002 1/ulp otherwise\002,/\002 8 = | A - VS T transpose(VS) | " "/ ( n |A| ulp ) (sort)\002,/\002 9 = | I - VS transpose(VS) | / " "( n ulp ) (sort) \002,/\002 10 = 0 if W are eigenvalues of T (so" "rt),\002,\002 1/ulp otherwise\002,/\002 11 = 0 if T same no mat" "ter if VS computed (sort),\002,\002 1/ulp otherwise\002,/\002 1" "2 = 0 if W same no matter if VS computed (sort),\002,\002 1/ulp" " otherwise\002,/\002 13 = 0 if sorting succesful, 1/ulp otherwise" "\002,/)"; static char fmt_9993[] = "(\002 N=\002,i5,\002, IWK=\002,i2,\002, seed" "=\002,4(i4,\002,\002),\002 type \002,i2,\002, test(\002,i2,\002)=" "\002,g10.3)"; /* System generated locals */ integer a_dim1, a_offset, h_dim1, h_offset, ht_dim1, ht_offset, vs_dim1, vs_offset, i__1, i__2, i__3, i__4, i__5, i__6; doublecomplex z__1; /* Builtin functions Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); double sqrt(doublereal); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Local variables */ static doublereal cond; static integer jcol; static char path[3]; static integer sdim, nmax; static doublereal unfl, ovfl; static integer rsub; static char sort[1]; static integer i__, j, n; static logical badnn; static integer nfail, imode, iinfo; static doublereal conds, anorm; extern /* Subroutine */ int zgees_(char *, char *, L_fp, integer *, doublecomplex *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, logical *, integer *); static integer jsize, nerrs, itype, jtype, ntest, lwork, isort; extern /* Subroutine */ int zhst01_(integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *); static doublereal rtulp; extern /* Subroutine */ int dlabad_(doublereal *, doublereal *); extern doublereal dlamch_(char *); static integer idumma[1], ioldsd[4]; extern /* Subroutine */ int xerbla_(char *, integer *); static integer knteig; extern /* Subroutine */ int dlasum_(char *, integer *, integer *, integer *), zlatme_(integer *, char *, integer *, doublecomplex *, integer *, doublereal *, doublecomplex *, char *, char *, char *, char *, doublereal *, integer *, doublereal *, integer *, integer *, doublereal *, doublecomplex *, integer *, doublecomplex *, integer *), zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *); static integer ntestf; extern logical zslect_(doublecomplex *); extern /* Subroutine */ int zlaset_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *), zlatmr_(integer *, integer *, char *, integer *, char *, doublecomplex *, integer *, doublereal *, doublecomplex *, char *, char *, doublecomplex *, integer *, doublereal *, doublecomplex * , integer *, doublereal *, char *, integer *, integer *, integer * , doublereal *, doublereal *, char *, doublecomplex *, integer *, integer *, integer *), zlatms_(integer *, integer *, char *, integer *, char *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, char *, doublecomplex *, integer *, doublecomplex *, integer *); static integer nnwork; static doublereal rtulpi; static integer mtypes, ntestt; static doublereal ulpinv, res[2]; static integer iwk; static doublereal ulp; /* Fortran I/O blocks */ static cilist io___31 = { 0, 0, 0, fmt_9992, 0 }; static cilist io___38 = { 0, 0, 0, fmt_9992, 0 }; static cilist io___42 = { 0, 0, 0, fmt_9992, 0 }; static cilist io___46 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___47 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___48 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___49 = { 0, 0, 0, fmt_9996, 0 }; static cilist io___50 = { 0, 0, 0, fmt_9995, 0 }; static cilist io___51 = { 0, 0, 0, fmt_9994, 0 }; static cilist io___52 = { 0, 0, 0, fmt_9993, 0 }; #define a_subscr(a_1,a_2) (a_2)*a_dim1 + a_1 #define a_ref(a_1,a_2) a[a_subscr(a_1,a_2)] #define h___subscr(a_1,a_2) (a_2)*h_dim1 + a_1 #define h___ref(a_1,a_2) h__[h___subscr(a_1,a_2)] #define ht_subscr(a_1,a_2) (a_2)*ht_dim1 + a_1 #define ht_ref(a_1,a_2) ht[ht_subscr(a_1,a_2)] /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 Purpose ======= ZDRVES checks the nonsymmetric eigenvalue (Schur form) problem driver ZGEES. When ZDRVES is called, a number of matrix "sizes" ("n's") and a number of matrix "types" are specified. For each size ("n") and each type of matrix, one matrix will be generated and used to test the nonsymmetric eigenroutines. For each matrix, 13 tests will be performed: (1) 0 if T is in Schur form, 1/ulp otherwise (no sorting of eigenvalues) (2) | A - VS T VS' | / ( n |A| ulp ) Here VS is the matrix of Schur eigenvectors, and T is in Schur form (no sorting of eigenvalues). (3) | I - VS VS' | / ( n ulp ) (no sorting of eigenvalues). (4) 0 if W are eigenvalues of T 1/ulp otherwise (no sorting of eigenvalues) (5) 0 if T(with VS) = T(without VS), 1/ulp otherwise (no sorting of eigenvalues) (6) 0 if eigenvalues(with VS) = eigenvalues(without VS), 1/ulp otherwise (no sorting of eigenvalues) (7) 0 if T is in Schur form, 1/ulp otherwise (with sorting of eigenvalues) (8) | A - VS T VS' | / ( n |A| ulp ) Here VS is the matrix of Schur eigenvectors, and T is in Schur form (with sorting of eigenvalues). (9) | I - VS VS' | / ( n ulp ) (with sorting of eigenvalues). (10) 0 if W are eigenvalues of T 1/ulp otherwise (with sorting of eigenvalues) (11) 0 if T(with VS) = T(without VS), 1/ulp otherwise (with sorting of eigenvalues) (12) 0 if eigenvalues(with VS) = eigenvalues(without VS), 1/ulp otherwise (with sorting of eigenvalues) (13) if sorting worked and SDIM is the number of eigenvalues which were SELECTed The "sizes" are specified by an array NN(1:NSIZES); the value of each element NN(j) specifies one size. The "types" are specified by a logical array DOTYPE( 1:NTYPES ); if DOTYPE(j) is .TRUE., then matrix type "j" will be generated. Currently, the list of possible types is: (1) The zero matrix. (2) The identity matrix. (3) A (transposed) Jordan block, with 1's on the diagonal. (4) A diagonal matrix with evenly spaced entries 1, ..., ULP and random complex angles. (ULP = (first number larger than 1) - 1 ) (5) A diagonal matrix with geometrically spaced entries 1, ..., ULP and random complex angles. (6) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP and random complex angles. (7) Same as (4), but multiplied by a constant near the overflow threshold (8) Same as (4), but multiplied by a constant near the underflow threshold (9) A matrix of the form U' T U, where U is unitary and T has evenly spaced entries 1, ..., ULP with random complex angles on the diagonal and random O(1) entries in the upper triangle. (10) A matrix of the form U' T U, where U is unitary and T has geometrically spaced entries 1, ..., ULP with random complex angles on the diagonal and random O(1) entries in the upper triangle. (11) A matrix of the form U' T U, where U is orthogonal and T has "clustered" entries 1, ULP,..., ULP with random complex angles on the diagonal and random O(1) entries in the upper triangle. (12) A matrix of the form U' T U, where U is unitary and T has complex eigenvalues randomly chosen from ULP < |z| < 1 and random O(1) entries in the upper triangle. (13) A matrix of the form X' T X, where X has condition SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP with random complex angles on the diagonal and random O(1) entries in the upper triangle. (14) A matrix of the form X' T X, where X has condition SQRT( ULP ) and T has geometrically spaced entries 1, ..., ULP with random complex angles on the diagonal and random O(1) entries in the upper triangle. (15) A matrix of the form X' T X, where X has condition SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP with random complex angles on the diagonal and random O(1) entries in the upper triangle. (16) A matrix of the form X' T X, where X has condition SQRT( ULP ) and T has complex eigenvalues randomly chosen from ULP < |z| < 1 and random O(1) entries in the upper triangle. (17) Same as (16), but multiplied by a constant near the overflow threshold (18) Same as (16), but multiplied by a constant near the underflow threshold (19) Nonsymmetric matrix with random entries chosen from (-1,1). If N is at least 4, all entries in first two rows and last row, and first column and last two columns are zero. (20) Same as (19), but multiplied by a constant near the overflow threshold (21) Same as (19), but multiplied by a constant near the underflow threshold Arguments ========= NSIZES (input) INTEGER The number of sizes of matrices to use. If it is zero, ZDRVES does nothing. It must be at least zero. NN (input) INTEGER array, dimension (NSIZES) An array containing the sizes to be used for the matrices. Zero values will be skipped. The values must be at least zero. NTYPES (input) INTEGER The number of elements in DOTYPE. If it is zero, ZDRVES does nothing. It must be at least zero. If it is MAXTYP+1 and NSIZES is 1, then an additional type, MAXTYP+1 is defined, which is to use whatever matrix is in A. This is only useful if DOTYPE(1:MAXTYP) is .FALSE. and DOTYPE(MAXTYP+1) is .TRUE. . DOTYPE (input) LOGICAL array, dimension (NTYPES) If DOTYPE(j) is .TRUE., then for each size in NN a matrix of that size and of type j will be generated. If NTYPES is smaller than the maximum number of types defined (PARAMETER MAXTYP), then types NTYPES+1 through MAXTYP will not be generated. If NTYPES is larger than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) will be ignored. ISEED (input/output) INTEGER array, dimension (4) On entry ISEED specifies the seed of the random number generator. The array elements should be between 0 and 4095; if not they will be reduced mod 4096. Also, ISEED(4) must be odd. The random number generator uses a linear congruential sequence limited to small integers, and so should produce machine independent random numbers. The values of ISEED are changed on exit, and can be used in the next call to ZDRVES to continue the same random number sequence. THRESH (input) DOUBLE PRECISION A test will count as "failed" if the "error", computed as described above, exceeds THRESH. Note that the error is scaled to be O(1), so THRESH should be a reasonably small multiple of 1, e.g., 10 or 100. In particular, it should not depend on the precision (single vs. double) or the size of the matrix. It must be at least zero. NOUNIT (input) INTEGER The FORTRAN unit number for printing out error messages (e.g., if a routine returns INFO not equal to 0.) A (workspace) COMPLEX*16 array, dimension (LDA, max(NN)) Used to hold the matrix whose eigenvalues are to be computed. On exit, A contains the last matrix actually used. LDA (input) INTEGER The leading dimension of A, and H. LDA must be at least 1 and at least max( NN ). H (workspace) COMPLEX*16 array, dimension (LDA, max(NN)) Another copy of the test matrix A, modified by ZGEES. HT (workspace) COMPLEX*16 array, dimension (LDA, max(NN)) Yet another copy of the test matrix A, modified by ZGEES. W (workspace) COMPLEX*16 array, dimension (max(NN)) The computed eigenvalues of A. WT (workspace) COMPLEX*16 array, dimension (max(NN)) Like W, this array contains the eigenvalues of A, but those computed when ZGEES only computes a partial eigendecomposition, i.e. not Schur vectors VS (workspace) COMPLEX*16 array, dimension (LDVS, max(NN)) VS holds the computed Schur vectors. LDVS (input) INTEGER Leading dimension of VS. Must be at least max(1,max(NN)). RESULT (output) DOUBLE PRECISION array, dimension (13) The values computed by the 13 tests described above. The values are currently limited to 1/ulp, to avoid overflow. WORK (workspace) COMPLEX*16 array, dimension (NWORK) NWORK (input) INTEGER The number of entries in WORK. This must be at least 5*NN(j)+2*NN(j)**2 for all j. RWORK (workspace) DOUBLE PRECISION array, dimension (max(NN)) IWORK (workspace) INTEGER array, dimension (max(NN)) INFO (output) INTEGER If 0, then everything ran OK. -1: NSIZES < 0 -2: Some NN(j) < 0 -3: NTYPES < 0 -6: THRESH < 0 -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). -15: LDVS < 1 or LDVS < NMAX, where NMAX is max( NN(j) ). -18: NWORK too small. If ZLATMR, CLATMS, CLATME or ZGEES returns an error code, the absolute value of it is returned. ----------------------------------------------------------------------- Some Local Variables and Parameters: ---- ----- --------- --- ---------- ZERO, ONE Real 0 and 1. MAXTYP The number of types defined. NMAX Largest value in NN. NERRS The number of tests which have exceeded THRESH COND, CONDS, IMODE Values to be passed to the matrix generators. ANORM Norm of A; passed to matrix generators. OVFL, UNFL Overflow and underflow thresholds. ULP, ULPINV Finest relative precision and its inverse. RTULP, RTULPI Square roots of the previous 4 values. The following four arrays decode JTYPE: KTYPE(j) The general type (1-10) for type "j". KMODE(j) The MODE value to be passed to the matrix generator for type "j". KMAGN(j) The order of magnitude ( O(1), O(overflow^(1/2) ), O(underflow^(1/2) ) KCONDS(j) Select whether CONDS is to be 1 or 1/sqrt(ulp). (0 means irrelevant.) ===================================================================== Parameter adjustments */ --nn; --dotype; --iseed; ht_dim1 = *lda; ht_offset = 1 + ht_dim1 * 1; ht -= ht_offset; h_dim1 = *lda; h_offset = 1 + h_dim1 * 1; h__ -= h_offset; a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; --w; --wt; vs_dim1 = *ldvs; vs_offset = 1 + vs_dim1 * 1; vs -= vs_offset; --result; --work; --rwork; --iwork; --bwork; /* Function Body */ s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "ES", (ftnlen)2, (ftnlen)2); /* Check for errors */ ntestt = 0; ntestf = 0; *info = 0; sslct_1.selopt = 0; /* Important constants */ badnn = FALSE_; nmax = 0; i__1 = *nsizes; for (j = 1; j <= i__1; ++j) { /* Computing MAX */ i__2 = nmax, i__3 = nn[j]; nmax = max(i__2,i__3); if (nn[j] < 0) { badnn = TRUE_; } /* L10: */ } /* Check for errors */ if (*nsizes < 0) { *info = -1; } else if (badnn) { *info = -2; } else if (*ntypes < 0) { *info = -3; } else if (*thresh < 0.) { *info = -6; } else if (*nounit <= 0) { *info = -7; } else if (*lda < 1 || *lda < nmax) { *info = -9; } else if (*ldvs < 1 || *ldvs < nmax) { *info = -15; } else /* if(complicated condition) */ { /* Computing 2nd power */ i__1 = nmax; if (nmax * 5 + (i__1 * i__1 << 1) > *nwork) { *info = -18; } } if (*info != 0) { i__1 = -(*info); xerbla_("ZDRVES", &i__1); return 0; } /* Quick return if nothing to do */ if (*nsizes == 0 || *ntypes == 0) { return 0; } /* More Important constants */ unfl = dlamch_("Safe minimum"); ovfl = 1. / unfl; dlabad_(&unfl, &ovfl); ulp = dlamch_("Precision"); ulpinv = 1. / ulp; rtulp = sqrt(ulp); rtulpi = 1. / rtulp; /* Loop over sizes, types */ nerrs = 0; i__1 = *nsizes; for (jsize = 1; jsize <= i__1; ++jsize) { n = nn[jsize]; if (*nsizes != 1) { mtypes = min(21,*ntypes); } else { mtypes = min(22,*ntypes); } i__2 = mtypes; for (jtype = 1; jtype <= i__2; ++jtype) { if (! dotype[jtype]) { goto L230; } /* Save ISEED in case of an error. */ for (j = 1; j <= 4; ++j) { ioldsd[j - 1] = iseed[j]; /* L20: */ } /* Compute "A" Control parameters: KMAGN KCONDS KMODE KTYPE =1 O(1) 1 clustered 1 zero =2 large large clustered 2 identity =3 small exponential Jordan =4 arithmetic diagonal, (w/ eigenvalues) =5 random log symmetric, w/ eigenvalues =6 random general, w/ eigenvalues =7 random diagonal =8 random symmetric =9 random general =10 random triangular */ if (mtypes > 21) { goto L90; } itype = ktype[jtype - 1]; imode = kmode[jtype - 1]; /* Compute norm */ switch (kmagn[jtype - 1]) { case 1: goto L30; case 2: goto L40; case 3: goto L50; } L30: anorm = 1.; goto L60; L40: anorm = ovfl * ulp; goto L60; L50: anorm = unfl * ulpinv; goto L60; L60: zlaset_("Full", lda, &n, &c_b1, &c_b1, &a[a_offset], lda); iinfo = 0; cond = ulpinv; /* Special Matrices -- Identity & Jordan block */ if (itype == 1) { /* Zero */ iinfo = 0; } else if (itype == 2) { /* Identity */ i__3 = n; for (jcol = 1; jcol <= i__3; ++jcol) { i__4 = a_subscr(jcol, jcol); z__1.r = anorm, z__1.i = 0.; a[i__4].r = z__1.r, a[i__4].i = z__1.i; /* L70: */ } } else if (itype == 3) { /* Jordan Block */ i__3 = n; for (jcol = 1; jcol <= i__3; ++jcol) { i__4 = a_subscr(jcol, jcol); z__1.r = anorm, z__1.i = 0.; a[i__4].r = z__1.r, a[i__4].i = z__1.i; if (jcol > 1) { i__4 = a_subscr(jcol, jcol - 1); a[i__4].r = 1., a[i__4].i = 0.; } /* L80: */ } } else if (itype == 4) { /* Diagonal Matrix, [Eigen]values Specified */ zlatms_(&n, &n, "S", &iseed[1], "H", &rwork[1], &imode, &cond, &anorm, &c__0, &c__0, "N", &a[a_offset], lda, &work[ n + 1], &iinfo); } else if (itype == 5) { /* Symmetric, eigenvalues specified */ zlatms_(&n, &n, "S", &iseed[1], "H", &rwork[1], &imode, &cond, &anorm, &n, &n, "N", &a[a_offset], lda, &work[n + 1], &iinfo); } else if (itype == 6) { /* General, eigenvalues specified */ if (kconds[jtype - 1] == 1) { conds = 1.; } else if (kconds[jtype - 1] == 2) { conds = rtulpi; } else { conds = 0.; } zlatme_(&n, "D", &iseed[1], &work[1], &imode, &cond, &c_b2, " ", "T", "T", "T", &rwork[1], &c__4, &conds, &n, &n, &anorm, &a[a_offset], lda, &work[(n << 1) + 1], & iinfo); } else if (itype == 7) { /* Diagonal, random eigenvalues */ zlatmr_(&n, &n, "D", &iseed[1], "N", &work[1], &c__6, &c_b38, &c_b2, "T", "N", &work[n + 1], &c__1, &c_b38, &work[( n << 1) + 1], &c__1, &c_b38, "N", idumma, &c__0, & c__0, &c_b48, &anorm, "NO", &a[a_offset], lda, &iwork[ 1], &iinfo); } else if (itype == 8) { /* Symmetric, random eigenvalues */ zlatmr_(&n, &n, "D", &iseed[1], "H", &work[1], &c__6, &c_b38, &c_b2, "T", "N", &work[n + 1], &c__1, &c_b38, &work[( n << 1) + 1], &c__1, &c_b38, "N", idumma, &n, &n, & c_b48, &anorm, "NO", &a[a_offset], lda, &iwork[1], & iinfo); } else if (itype == 9) { /* General, random eigenvalues */ zlatmr_(&n, &n, "D", &iseed[1], "N", &work[1], &c__6, &c_b38, &c_b2, "T", "N", &work[n + 1], &c__1, &c_b38, &work[( n << 1) + 1], &c__1, &c_b38, "N", idumma, &n, &n, & c_b48, &anorm, "NO", &a[a_offset], lda, &iwork[1], & iinfo); if (n >= 4) { zlaset_("Full", &c__2, &n, &c_b1, &c_b1, &a[a_offset], lda); i__3 = n - 3; zlaset_("Full", &i__3, &c__1, &c_b1, &c_b1, &a_ref(3, 1), lda); i__3 = n - 3; zlaset_("Full", &i__3, &c__2, &c_b1, &c_b1, &a_ref(3, n - 1), lda); zlaset_("Full", &c__1, &n, &c_b1, &c_b1, &a_ref(n, 1), lda); } } else if (itype == 10) { /* Triangular, random eigenvalues */ zlatmr_(&n, &n, "D", &iseed[1], "N", &work[1], &c__6, &c_b38, &c_b2, "T", "N", &work[n + 1], &c__1, &c_b38, &work[( n << 1) + 1], &c__1, &c_b38, "N", idumma, &n, &c__0, & c_b48, &anorm, "NO", &a[a_offset], lda, &iwork[1], & iinfo); } else { iinfo = 1; } if (iinfo != 0) { io___31.ciunit = *nounit; s_wsfe(&io___31); do_fio(&c__1, "Generator", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); return 0; } L90: /* Test for minimal and generous workspace */ for (iwk = 1; iwk <= 2; ++iwk) { if (iwk == 1) { nnwork = n * 3; } else { /* Computing 2nd power */ i__3 = n; nnwork = n * 5 + (i__3 * i__3 << 1); } nnwork = max(nnwork,1); /* Initialize RESULT */ for (j = 1; j <= 13; ++j) { result[j] = -1.; /* L100: */ } /* Test with and without sorting of eigenvalues */ for (isort = 0; isort <= 1; ++isort) { if (isort == 0) { *(unsigned char *)sort = 'N'; rsub = 0; } else { *(unsigned char *)sort = 'S'; rsub = 6; } /* Compute Schur form and Schur vectors, and test them */ zlacpy_("F", &n, &n, &a[a_offset], lda, &h__[h_offset], lda); zgees_("V", sort, (L_fp)zslect_, &n, &h__[h_offset], lda, &sdim, &w[1], &vs[vs_offset], ldvs, &work[1], & nnwork, &rwork[1], &bwork[1], &iinfo); if (iinfo != 0) { result[rsub + 1] = ulpinv; io___38.ciunit = *nounit; s_wsfe(&io___38); do_fio(&c__1, "ZGEES1", (ftnlen)6); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)) ; do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); e_wsfe(); *info = abs(iinfo); goto L190; } /* Do Test (1) or Test (7) */ result[rsub + 1] = 0.; i__3 = n - 1; for (j = 1; j <= i__3; ++j) { i__4 = n; for (i__ = j + 1; i__ <= i__4; ++i__) { i__5 = h___subscr(i__, j); if (h__[i__5].r != 0. || h__[i__5].i != 0.) { result[rsub + 1] = ulpinv; } /* L110: */ } /* L120: */ } /* Do Tests (2) and (3) or Tests (8) and (9) Computing MAX */ i__3 = 1, i__4 = (n << 1) * n; lwork = max(i__3,i__4); zhst01_(&n, &c__1, &n, &a[a_offset], lda, &h__[h_offset], lda, &vs[vs_offset], ldvs, &work[1], &lwork, & rwork[1], res); result[rsub + 2] = res[0]; result[rsub + 3] = res[1]; /* Do Test (4) or Test (10) */ result[rsub + 4] = 0.; i__3 = n; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = h___subscr(i__, i__); i__5 = i__; if (h__[i__4].r != w[i__5].r || h__[i__4].i != w[i__5] .i) { result[rsub + 4] = ulpinv; } /* L130: */ } /* Do Test (5) or Test (11) */ zlacpy_("F", &n, &n, &a[a_offset], lda, &ht[ht_offset], lda); zgees_("N", sort, (L_fp)zslect_, &n, &ht[ht_offset], lda, &sdim, &wt[1], &vs[vs_offset], ldvs, &work[1], & nnwork, &rwork[1], &bwork[1], &iinfo); if (iinfo != 0) { result[rsub + 5] = ulpinv; io___42.ciunit = *nounit; s_wsfe(&io___42); do_fio(&c__1, "ZGEES2", (ftnlen)6); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)) ; do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); e_wsfe(); *info = abs(iinfo); goto L190; } result[rsub + 5] = 0.; i__3 = n; for (j = 1; j <= i__3; ++j) { i__4 = n; for (i__ = 1; i__ <= i__4; ++i__) { i__5 = h___subscr(i__, j); i__6 = ht_subscr(i__, j); if (h__[i__5].r != ht[i__6].r || h__[i__5].i != ht[i__6].i) { result[rsub + 5] = ulpinv; } /* L140: */ } /* L150: */ } /* Do Test (6) or Test (12) */ result[rsub + 6] = 0.; i__3 = n; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = i__; i__5 = i__; if (w[i__4].r != wt[i__5].r || w[i__4].i != wt[i__5] .i) { result[rsub + 6] = ulpinv; } /* L160: */ } /* Do Test (13) */ if (isort == 1) { result[13] = 0.; knteig = 0; i__3 = n; for (i__ = 1; i__ <= i__3; ++i__) { if (zslect_(&w[i__])) { ++knteig; } if (i__ < n) { if (zslect_(&w[i__ + 1]) && ! zslect_(&w[i__]) ) { result[13] = ulpinv; } } /* L170: */ } if (sdim != knteig) { result[13] = ulpinv; } } /* L180: */ } /* End of Loop -- Check for RESULT(j) > THRESH */ L190: ntest = 0; nfail = 0; for (j = 1; j <= 13; ++j) { if (result[j] >= 0.) { ++ntest; } if (result[j] >= *thresh) { ++nfail; } /* L200: */ } if (nfail > 0) { ++ntestf; } if (ntestf == 1) { io___46.ciunit = *nounit; s_wsfe(&io___46); do_fio(&c__1, path, (ftnlen)3); e_wsfe(); io___47.ciunit = *nounit; s_wsfe(&io___47); e_wsfe(); io___48.ciunit = *nounit; s_wsfe(&io___48); e_wsfe(); io___49.ciunit = *nounit; s_wsfe(&io___49); e_wsfe(); io___50.ciunit = *nounit; s_wsfe(&io___50); do_fio(&c__1, (char *)&(*thresh), (ftnlen)sizeof( doublereal)); e_wsfe(); io___51.ciunit = *nounit; s_wsfe(&io___51); e_wsfe(); ntestf = 2; } for (j = 1; j <= 13; ++j) { if (result[j] >= *thresh) { io___52.ciunit = *nounit; s_wsfe(&io___52); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&iwk, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&j, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[j], (ftnlen)sizeof( doublereal)); e_wsfe(); } /* L210: */ } nerrs += nfail; ntestt += ntest; /* L220: */ } L230: ; } /* L240: */ } /* Summary */ dlasum_(path, nounit, &nerrs, &ntestt); return 0; /* End of ZDRVES */ } /* zdrves_ */ #undef ht_ref #undef ht_subscr #undef h___ref #undef h___subscr #undef a_ref #undef a_subscr