#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int dsytri_(char *uplo, integer *n, doublereal *a, integer * lda, integer *ipiv, doublereal *work, integer *info) { /* -- LAPACK routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University March 31, 1993 Purpose ======= DSYTRI computes the inverse of a real symmetric indefinite matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by DSYTRF. Arguments ========= UPLO (input) CHARACTER*1 Specifies whether the details of the factorization are stored as an upper or lower triangular matrix. = 'U': Upper triangular, form is A = U*D*U**T; = 'L': Lower triangular, form is A = L*D*L**T. N (input) INTEGER The order of the matrix A. N >= 0. A (input/output) DOUBLE PRECISION array, dimension (LDA,N) On entry, the block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by DSYTRF. On exit, if INFO = 0, the (symmetric) inverse of the original matrix. If UPLO = 'U', the upper triangular part of the inverse is formed and the part of A below the diagonal is not referenced; if UPLO = 'L' the lower triangular part of the inverse is formed and the part of A above the diagonal is not referenced. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). IPIV (input) INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by DSYTRF. WORK (workspace) DOUBLE PRECISION array, dimension (N) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its inverse could not be computed. ===================================================================== Test the input parameters. Parameter adjustments */ /* Table of constant values */ static integer c__1 = 1; static doublereal c_b11 = -1.; static doublereal c_b13 = 0.; /* System generated locals */ integer a_dim1, a_offset, i__1; doublereal d__1; /* Local variables */ extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, integer *); static doublereal temp, akkp1, d__; static integer k; static doublereal t; extern logical lsame_(char *, char *); extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, doublereal *, integer *), dswap_(integer *, doublereal *, integer *, doublereal *, integer *); static integer kstep; static logical upper; extern /* Subroutine */ int dsymv_(char *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *); static doublereal ak; static integer kp; extern /* Subroutine */ int xerbla_(char *, integer *); static doublereal akp1; #define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1] a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; --ipiv; --work; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*n)) { *info = -4; } if (*info != 0) { i__1 = -(*info); xerbla_("DSYTRI", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Check that the diagonal matrix D is nonsingular. */ if (upper) { /* Upper triangular storage: examine D from bottom to top */ for (*info = *n; *info >= 1; --(*info)) { if (ipiv[*info] > 0 && a_ref(*info, *info) == 0.) { return 0; } /* L10: */ } } else { /* Lower triangular storage: examine D from top to bottom. */ i__1 = *n; for (*info = 1; *info <= i__1; ++(*info)) { if (ipiv[*info] > 0 && a_ref(*info, *info) == 0.) { return 0; } /* L20: */ } } *info = 0; if (upper) { /* Compute inv(A) from the factorization A = U*D*U'. K is the main loop index, increasing from 1 to N in steps of 1 or 2, depending on the size of the diagonal blocks. */ k = 1; L30: /* If K > N, exit from loop. */ if (k > *n) { goto L40; } if (ipiv[k] > 0) { /* 1 x 1 diagonal block Invert the diagonal block. */ a_ref(k, k) = 1. / a_ref(k, k); /* Compute column K of the inverse. */ if (k > 1) { i__1 = k - 1; dcopy_(&i__1, &a_ref(1, k), &c__1, &work[1], &c__1); i__1 = k - 1; dsymv_(uplo, &i__1, &c_b11, &a[a_offset], lda, &work[1], & c__1, &c_b13, &a_ref(1, k), &c__1); i__1 = k - 1; a_ref(k, k) = a_ref(k, k) - ddot_(&i__1, &work[1], &c__1, & a_ref(1, k), &c__1); } kstep = 1; } else { /* 2 x 2 diagonal block Invert the diagonal block. */ t = (d__1 = a_ref(k, k + 1), abs(d__1)); ak = a_ref(k, k) / t; akp1 = a_ref(k + 1, k + 1) / t; akkp1 = a_ref(k, k + 1) / t; d__ = t * (ak * akp1 - 1.); a_ref(k, k) = akp1 / d__; a_ref(k + 1, k + 1) = ak / d__; a_ref(k, k + 1) = -akkp1 / d__; /* Compute columns K and K+1 of the inverse. */ if (k > 1) { i__1 = k - 1; dcopy_(&i__1, &a_ref(1, k), &c__1, &work[1], &c__1); i__1 = k - 1; dsymv_(uplo, &i__1, &c_b11, &a[a_offset], lda, &work[1], & c__1, &c_b13, &a_ref(1, k), &c__1); i__1 = k - 1; a_ref(k, k) = a_ref(k, k) - ddot_(&i__1, &work[1], &c__1, & a_ref(1, k), &c__1); i__1 = k - 1; a_ref(k, k + 1) = a_ref(k, k + 1) - ddot_(&i__1, &a_ref(1, k), &c__1, &a_ref(1, k + 1), &c__1); i__1 = k - 1; dcopy_(&i__1, &a_ref(1, k + 1), &c__1, &work[1], &c__1); i__1 = k - 1; dsymv_(uplo, &i__1, &c_b11, &a[a_offset], lda, &work[1], & c__1, &c_b13, &a_ref(1, k + 1), &c__1); i__1 = k - 1; a_ref(k + 1, k + 1) = a_ref(k + 1, k + 1) - ddot_(&i__1, & work[1], &c__1, &a_ref(1, k + 1), &c__1); } kstep = 2; } kp = (i__1 = ipiv[k], abs(i__1)); if (kp != k) { /* Interchange rows and columns K and KP in the leading submatrix A(1:k+1,1:k+1) */ i__1 = kp - 1; dswap_(&i__1, &a_ref(1, k), &c__1, &a_ref(1, kp), &c__1); i__1 = k - kp - 1; dswap_(&i__1, &a_ref(kp + 1, k), &c__1, &a_ref(kp, kp + 1), lda); temp = a_ref(k, k); a_ref(k, k) = a_ref(kp, kp); a_ref(kp, kp) = temp; if (kstep == 2) { temp = a_ref(k, k + 1); a_ref(k, k + 1) = a_ref(kp, k + 1); a_ref(kp, k + 1) = temp; } } k += kstep; goto L30; L40: ; } else { /* Compute inv(A) from the factorization A = L*D*L'. K is the main loop index, increasing from 1 to N in steps of 1 or 2, depending on the size of the diagonal blocks. */ k = *n; L50: /* If K < 1, exit from loop. */ if (k < 1) { goto L60; } if (ipiv[k] > 0) { /* 1 x 1 diagonal block Invert the diagonal block. */ a_ref(k, k) = 1. / a_ref(k, k); /* Compute column K of the inverse. */ if (k < *n) { i__1 = *n - k; dcopy_(&i__1, &a_ref(k + 1, k), &c__1, &work[1], &c__1); i__1 = *n - k; dsymv_(uplo, &i__1, &c_b11, &a_ref(k + 1, k + 1), lda, &work[ 1], &c__1, &c_b13, &a_ref(k + 1, k), &c__1) ; i__1 = *n - k; a_ref(k, k) = a_ref(k, k) - ddot_(&i__1, &work[1], &c__1, & a_ref(k + 1, k), &c__1); } kstep = 1; } else { /* 2 x 2 diagonal block Invert the diagonal block. */ t = (d__1 = a_ref(k, k - 1), abs(d__1)); ak = a_ref(k - 1, k - 1) / t; akp1 = a_ref(k, k) / t; akkp1 = a_ref(k, k - 1) / t; d__ = t * (ak * akp1 - 1.); a_ref(k - 1, k - 1) = akp1 / d__; a_ref(k, k) = ak / d__; a_ref(k, k - 1) = -akkp1 / d__; /* Compute columns K-1 and K of the inverse. */ if (k < *n) { i__1 = *n - k; dcopy_(&i__1, &a_ref(k + 1, k), &c__1, &work[1], &c__1); i__1 = *n - k; dsymv_(uplo, &i__1, &c_b11, &a_ref(k + 1, k + 1), lda, &work[ 1], &c__1, &c_b13, &a_ref(k + 1, k), &c__1) ; i__1 = *n - k; a_ref(k, k) = a_ref(k, k) - ddot_(&i__1, &work[1], &c__1, & a_ref(k + 1, k), &c__1); i__1 = *n - k; a_ref(k, k - 1) = a_ref(k, k - 1) - ddot_(&i__1, &a_ref(k + 1, k), &c__1, &a_ref(k + 1, k - 1), &c__1); i__1 = *n - k; dcopy_(&i__1, &a_ref(k + 1, k - 1), &c__1, &work[1], &c__1); i__1 = *n - k; dsymv_(uplo, &i__1, &c_b11, &a_ref(k + 1, k + 1), lda, &work[ 1], &c__1, &c_b13, &a_ref(k + 1, k - 1), &c__1); i__1 = *n - k; a_ref(k - 1, k - 1) = a_ref(k - 1, k - 1) - ddot_(&i__1, & work[1], &c__1, &a_ref(k + 1, k - 1), &c__1); } kstep = 2; } kp = (i__1 = ipiv[k], abs(i__1)); if (kp != k) { /* Interchange rows and columns K and KP in the trailing submatrix A(k-1:n,k-1:n) */ if (kp < *n) { i__1 = *n - kp; dswap_(&i__1, &a_ref(kp + 1, k), &c__1, &a_ref(kp + 1, kp), & c__1); } i__1 = kp - k - 1; dswap_(&i__1, &a_ref(k + 1, k), &c__1, &a_ref(kp, k + 1), lda); temp = a_ref(k, k); a_ref(k, k) = a_ref(kp, kp); a_ref(kp, kp) = temp; if (kstep == 2) { temp = a_ref(k, k - 1); a_ref(k, k - 1) = a_ref(kp, k - 1); a_ref(kp, k - 1) = temp; } } k -= kstep; goto L50; L60: ; } return 0; /* End of DSYTRI */ } /* dsytri_ */ #undef a_ref