#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int ztrsyl_(char *trana, char *tranb, integer *isgn, integer *m, integer *n, doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb, doublecomplex *c__, integer *ldc, doublereal *scale, integer *info) { /* -- LAPACK routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University June 30, 1999 Purpose ======= ZTRSYL solves the complex Sylvester matrix equation: op(A)*X + X*op(B) = scale*C or op(A)*X - X*op(B) = scale*C, where op(A) = A or A**H, and A and B are both upper triangular. A is M-by-M and B is N-by-N; the right hand side C and the solution X are M-by-N; and scale is an output scale factor, set <= 1 to avoid overflow in X. Arguments ========= TRANA (input) CHARACTER*1 Specifies the option op(A): = 'N': op(A) = A (No transpose) = 'C': op(A) = A**H (Conjugate transpose) TRANB (input) CHARACTER*1 Specifies the option op(B): = 'N': op(B) = B (No transpose) = 'C': op(B) = B**H (Conjugate transpose) ISGN (input) INTEGER Specifies the sign in the equation: = +1: solve op(A)*X + X*op(B) = scale*C = -1: solve op(A)*X - X*op(B) = scale*C M (input) INTEGER The order of the matrix A, and the number of rows in the matrices X and C. M >= 0. N (input) INTEGER The order of the matrix B, and the number of columns in the matrices X and C. N >= 0. A (input) COMPLEX*16 array, dimension (LDA,M) The upper triangular matrix A. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,M). B (input) COMPLEX*16 array, dimension (LDB,N) The upper triangular matrix B. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). C (input/output) COMPLEX*16 array, dimension (LDC,N) On entry, the M-by-N right hand side matrix C. On exit, C is overwritten by the solution matrix X. LDC (input) INTEGER The leading dimension of the array C. LDC >= max(1,M) SCALE (output) DOUBLE PRECISION The scale factor, scale, set <= 1 to avoid overflow in X. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value = 1: A and B have common or very close eigenvalues; perturbed values were used to solve the equation (but the matrices A and B are unchanged). ===================================================================== Decode and Test input parameters Parameter adjustments */ /* Table of constant values */ static integer c__1 = 1; /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2, i__3, i__4; doublereal d__1, d__2; doublecomplex z__1, z__2, z__3, z__4; /* Builtin functions */ double d_imag(doublecomplex *); void d_cnjg(doublecomplex *, doublecomplex *); /* Local variables */ static doublereal smin; static doublecomplex suml, sumr; static integer j, k, l; extern logical lsame_(char *, char *); extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *), zdotu_( doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *); static doublecomplex a11; static doublereal db; extern /* Subroutine */ int dlabad_(doublereal *, doublereal *); extern doublereal dlamch_(char *); static doublecomplex x11; static doublereal scaloc; extern /* Subroutine */ int xerbla_(char *, integer *); extern doublereal zlange_(char *, integer *, integer *, doublecomplex *, integer *, doublereal *); static doublereal bignum; extern /* Subroutine */ int zdscal_(integer *, doublereal *, doublecomplex *, integer *); extern /* Double Complex */ VOID zladiv_(doublecomplex *, doublecomplex *, doublecomplex *); static logical notrna, notrnb; static doublereal smlnum, da11; static doublecomplex vec; static doublereal dum[1], eps, sgn; #define a_subscr(a_1,a_2) (a_2)*a_dim1 + a_1 #define a_ref(a_1,a_2) a[a_subscr(a_1,a_2)] #define b_subscr(a_1,a_2) (a_2)*b_dim1 + a_1 #define b_ref(a_1,a_2) b[b_subscr(a_1,a_2)] #define c___subscr(a_1,a_2) (a_2)*c_dim1 + a_1 #define c___ref(a_1,a_2) c__[c___subscr(a_1,a_2)] a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; c_dim1 = *ldc; c_offset = 1 + c_dim1 * 1; c__ -= c_offset; /* Function Body */ notrna = lsame_(trana, "N"); notrnb = lsame_(tranb, "N"); *info = 0; if (! notrna && ! lsame_(trana, "T") && ! lsame_( trana, "C")) { *info = -1; } else if (! notrnb && ! lsame_(tranb, "T") && ! lsame_(tranb, "C")) { *info = -2; } else if (*isgn != 1 && *isgn != -1) { *info = -3; } else if (*m < 0) { *info = -4; } else if (*n < 0) { *info = -5; } else if (*lda < max(1,*m)) { *info = -7; } else if (*ldb < max(1,*n)) { *info = -9; } else if (*ldc < max(1,*m)) { *info = -11; } if (*info != 0) { i__1 = -(*info); xerbla_("ZTRSYL", &i__1); return 0; } /* Quick return if possible */ if (*m == 0 || *n == 0) { return 0; } /* Set constants to control overflow */ eps = dlamch_("P"); smlnum = dlamch_("S"); bignum = 1. / smlnum; dlabad_(&smlnum, &bignum); smlnum = smlnum * (doublereal) (*m * *n) / eps; bignum = 1. / smlnum; /* Computing MAX */ d__1 = smlnum, d__2 = eps * zlange_("M", m, m, &a[a_offset], lda, dum), d__1 = max(d__1,d__2), d__2 = eps * zlange_("M", n, n, &b[b_offset], ldb, dum); smin = max(d__1,d__2); *scale = 1.; sgn = (doublereal) (*isgn); if (notrna && notrnb) { /* Solve A*X + ISGN*X*B = scale*C. The (K,L)th block of X is determined starting from bottom-left corner column by column by A(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L) Where M L-1 R(K,L) = SUM [A(K,I)*X(I,L)] +ISGN*SUM [X(K,J)*B(J,L)]. I=K+1 J=1 */ i__1 = *n; for (l = 1; l <= i__1; ++l) { for (k = *m; k >= 1; --k) { /* Computing MIN */ i__2 = k + 1; /* Computing MIN */ i__3 = k + 1; i__4 = *m - k; zdotu_(&z__1, &i__4, &a_ref(k, min(i__2,*m)), lda, &c___ref( min(i__3,*m), l), &c__1); suml.r = z__1.r, suml.i = z__1.i; i__2 = l - 1; zdotu_(&z__1, &i__2, &c___ref(k, 1), ldc, &b_ref(1, l), &c__1) ; sumr.r = z__1.r, sumr.i = z__1.i; i__2 = c___subscr(k, l); z__3.r = sgn * sumr.r, z__3.i = sgn * sumr.i; z__2.r = suml.r + z__3.r, z__2.i = suml.i + z__3.i; z__1.r = c__[i__2].r - z__2.r, z__1.i = c__[i__2].i - z__2.i; vec.r = z__1.r, vec.i = z__1.i; scaloc = 1.; i__2 = a_subscr(k, k); i__3 = b_subscr(l, l); z__2.r = sgn * b[i__3].r, z__2.i = sgn * b[i__3].i; z__1.r = a[i__2].r + z__2.r, z__1.i = a[i__2].i + z__2.i; a11.r = z__1.r, a11.i = z__1.i; da11 = (d__1 = a11.r, abs(d__1)) + (d__2 = d_imag(&a11), abs( d__2)); if (da11 <= smin) { a11.r = smin, a11.i = 0.; da11 = smin; *info = 1; } db = (d__1 = vec.r, abs(d__1)) + (d__2 = d_imag(&vec), abs( d__2)); if (da11 < 1. && db > 1.) { if (db > bignum * da11) { scaloc = 1. / db; } } z__3.r = scaloc, z__3.i = 0.; z__2.r = vec.r * z__3.r - vec.i * z__3.i, z__2.i = vec.r * z__3.i + vec.i * z__3.r; zladiv_(&z__1, &z__2, &a11); x11.r = z__1.r, x11.i = z__1.i; if (scaloc != 1.) { i__2 = *n; for (j = 1; j <= i__2; ++j) { zdscal_(m, &scaloc, &c___ref(1, j), &c__1); /* L10: */ } *scale *= scaloc; } i__2 = c___subscr(k, l); c__[i__2].r = x11.r, c__[i__2].i = x11.i; /* L20: */ } /* L30: */ } } else if (! notrna && notrnb) { /* Solve A' *X + ISGN*X*B = scale*C. The (K,L)th block of X is determined starting from upper-left corner column by column by A'(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L) Where K-1 L-1 R(K,L) = SUM [A'(I,K)*X(I,L)] + ISGN*SUM [X(K,J)*B(J,L)] I=1 J=1 */ i__1 = *n; for (l = 1; l <= i__1; ++l) { i__2 = *m; for (k = 1; k <= i__2; ++k) { i__3 = k - 1; zdotc_(&z__1, &i__3, &a_ref(1, k), &c__1, &c___ref(1, l), & c__1); suml.r = z__1.r, suml.i = z__1.i; i__3 = l - 1; zdotu_(&z__1, &i__3, &c___ref(k, 1), ldc, &b_ref(1, l), &c__1) ; sumr.r = z__1.r, sumr.i = z__1.i; i__3 = c___subscr(k, l); z__3.r = sgn * sumr.r, z__3.i = sgn * sumr.i; z__2.r = suml.r + z__3.r, z__2.i = suml.i + z__3.i; z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i; vec.r = z__1.r, vec.i = z__1.i; scaloc = 1.; d_cnjg(&z__2, &a_ref(k, k)); i__3 = b_subscr(l, l); z__3.r = sgn * b[i__3].r, z__3.i = sgn * b[i__3].i; z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; a11.r = z__1.r, a11.i = z__1.i; da11 = (d__1 = a11.r, abs(d__1)) + (d__2 = d_imag(&a11), abs( d__2)); if (da11 <= smin) { a11.r = smin, a11.i = 0.; da11 = smin; *info = 1; } db = (d__1 = vec.r, abs(d__1)) + (d__2 = d_imag(&vec), abs( d__2)); if (da11 < 1. && db > 1.) { if (db > bignum * da11) { scaloc = 1. / db; } } z__3.r = scaloc, z__3.i = 0.; z__2.r = vec.r * z__3.r - vec.i * z__3.i, z__2.i = vec.r * z__3.i + vec.i * z__3.r; zladiv_(&z__1, &z__2, &a11); x11.r = z__1.r, x11.i = z__1.i; if (scaloc != 1.) { i__3 = *n; for (j = 1; j <= i__3; ++j) { zdscal_(m, &scaloc, &c___ref(1, j), &c__1); /* L40: */ } *scale *= scaloc; } i__3 = c___subscr(k, l); c__[i__3].r = x11.r, c__[i__3].i = x11.i; /* L50: */ } /* L60: */ } } else if (! notrna && ! notrnb) { /* Solve A'*X + ISGN*X*B' = C. The (K,L)th block of X is determined starting from upper-right corner column by column by A'(K,K)*X(K,L) + ISGN*X(K,L)*B'(L,L) = C(K,L) - R(K,L) Where K-1 R(K,L) = SUM [A'(I,K)*X(I,L)] + I=1 N ISGN*SUM [X(K,J)*B'(L,J)]. J=L+1 */ for (l = *n; l >= 1; --l) { i__1 = *m; for (k = 1; k <= i__1; ++k) { i__2 = k - 1; zdotc_(&z__1, &i__2, &a_ref(1, k), &c__1, &c___ref(1, l), & c__1); suml.r = z__1.r, suml.i = z__1.i; /* Computing MIN */ i__2 = l + 1; /* Computing MIN */ i__3 = l + 1; i__4 = *n - l; zdotc_(&z__1, &i__4, &c___ref(k, min(i__2,*n)), ldc, &b_ref(l, min(i__3,*n)), ldb); sumr.r = z__1.r, sumr.i = z__1.i; i__2 = c___subscr(k, l); d_cnjg(&z__4, &sumr); z__3.r = sgn * z__4.r, z__3.i = sgn * z__4.i; z__2.r = suml.r + z__3.r, z__2.i = suml.i + z__3.i; z__1.r = c__[i__2].r - z__2.r, z__1.i = c__[i__2].i - z__2.i; vec.r = z__1.r, vec.i = z__1.i; scaloc = 1.; i__2 = a_subscr(k, k); i__3 = b_subscr(l, l); z__3.r = sgn * b[i__3].r, z__3.i = sgn * b[i__3].i; z__2.r = a[i__2].r + z__3.r, z__2.i = a[i__2].i + z__3.i; d_cnjg(&z__1, &z__2); a11.r = z__1.r, a11.i = z__1.i; da11 = (d__1 = a11.r, abs(d__1)) + (d__2 = d_imag(&a11), abs( d__2)); if (da11 <= smin) { a11.r = smin, a11.i = 0.; da11 = smin; *info = 1; } db = (d__1 = vec.r, abs(d__1)) + (d__2 = d_imag(&vec), abs( d__2)); if (da11 < 1. && db > 1.) { if (db > bignum * da11) { scaloc = 1. / db; } } z__3.r = scaloc, z__3.i = 0.; z__2.r = vec.r * z__3.r - vec.i * z__3.i, z__2.i = vec.r * z__3.i + vec.i * z__3.r; zladiv_(&z__1, &z__2, &a11); x11.r = z__1.r, x11.i = z__1.i; if (scaloc != 1.) { i__2 = *n; for (j = 1; j <= i__2; ++j) { zdscal_(m, &scaloc, &c___ref(1, j), &c__1); /* L70: */ } *scale *= scaloc; } i__2 = c___subscr(k, l); c__[i__2].r = x11.r, c__[i__2].i = x11.i; /* L80: */ } /* L90: */ } } else if (notrna && ! notrnb) { /* Solve A*X + ISGN*X*B' = C. The (K,L)th block of X is determined starting from bottom-left corner column by column by A(K,K)*X(K,L) + ISGN*X(K,L)*B'(L,L) = C(K,L) - R(K,L) Where M N R(K,L) = SUM [A(K,I)*X(I,L)] + ISGN*SUM [X(K,J)*B'(L,J)] I=K+1 J=L+1 */ for (l = *n; l >= 1; --l) { for (k = *m; k >= 1; --k) { /* Computing MIN */ i__1 = k + 1; /* Computing MIN */ i__2 = k + 1; i__3 = *m - k; zdotu_(&z__1, &i__3, &a_ref(k, min(i__1,*m)), lda, &c___ref( min(i__2,*m), l), &c__1); suml.r = z__1.r, suml.i = z__1.i; /* Computing MIN */ i__1 = l + 1; /* Computing MIN */ i__2 = l + 1; i__3 = *n - l; zdotc_(&z__1, &i__3, &c___ref(k, min(i__1,*n)), ldc, &b_ref(l, min(i__2,*n)), ldb); sumr.r = z__1.r, sumr.i = z__1.i; i__1 = c___subscr(k, l); d_cnjg(&z__4, &sumr); z__3.r = sgn * z__4.r, z__3.i = sgn * z__4.i; z__2.r = suml.r + z__3.r, z__2.i = suml.i + z__3.i; z__1.r = c__[i__1].r - z__2.r, z__1.i = c__[i__1].i - z__2.i; vec.r = z__1.r, vec.i = z__1.i; scaloc = 1.; i__1 = a_subscr(k, k); d_cnjg(&z__3, &b_ref(l, l)); z__2.r = sgn * z__3.r, z__2.i = sgn * z__3.i; z__1.r = a[i__1].r + z__2.r, z__1.i = a[i__1].i + z__2.i; a11.r = z__1.r, a11.i = z__1.i; da11 = (d__1 = a11.r, abs(d__1)) + (d__2 = d_imag(&a11), abs( d__2)); if (da11 <= smin) { a11.r = smin, a11.i = 0.; da11 = smin; *info = 1; } db = (d__1 = vec.r, abs(d__1)) + (d__2 = d_imag(&vec), abs( d__2)); if (da11 < 1. && db > 1.) { if (db > bignum * da11) { scaloc = 1. / db; } } z__3.r = scaloc, z__3.i = 0.; z__2.r = vec.r * z__3.r - vec.i * z__3.i, z__2.i = vec.r * z__3.i + vec.i * z__3.r; zladiv_(&z__1, &z__2, &a11); x11.r = z__1.r, x11.i = z__1.i; if (scaloc != 1.) { i__1 = *n; for (j = 1; j <= i__1; ++j) { zdscal_(m, &scaloc, &c___ref(1, j), &c__1); /* L100: */ } *scale *= scaloc; } i__1 = c___subscr(k, l); c__[i__1].r = x11.r, c__[i__1].i = x11.i; /* L110: */ } /* L120: */ } } return 0; /* End of ZTRSYL */ } /* ztrsyl_ */ #undef c___ref #undef c___subscr #undef b_ref #undef b_subscr #undef a_ref #undef a_subscr