/* zdrvgt.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Common Block Declarations */ struct { integer infot, nunit; logical ok, lerr; } infoc_; #define infoc_1 infoc_ struct { char srnamt[32]; } srnamc_; #define srnamc_1 srnamc_ /* Table of constant values */ static integer c__3 = 3; static integer c__0 = 0; static integer c_n1 = -1; static integer c__1 = 1; static integer c__2 = 2; static doublereal c_b43 = 1.; static doublereal c_b44 = 0.; static doublecomplex c_b65 = {0.,0.}; /* Subroutine */ int zdrvgt_(logical *dotype, integer *nn, integer *nval, integer *nrhs, doublereal *thresh, logical *tsterr, doublecomplex *a, doublecomplex *af, doublecomplex *b, doublecomplex *x, doublecomplex * xact, doublecomplex *work, doublereal *rwork, integer *iwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 0,0,0,1 }; static char transs[1*3] = "N" "T" "C"; /* Format strings */ static char fmt_9999[] = "(1x,a,\002, N =\002,i5,\002, type \002,i2,\002" ", test \002,i2,\002, ratio = \002,g12.5)"; static char fmt_9998[] = "(1x,a,\002, FACT='\002,a1,\002', TRANS='\002,a" "1,\002', N =\002,i5,\002, type \002,i2,\002, test \002,i2,\002, " "ratio = \002,g12.5)"; /* System generated locals */ address a__1[2]; integer i__1, i__2, i__3, i__4, i__5, i__6[2]; doublereal d__1, d__2; char ch__1[2]; /* Builtin functions */ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen); /* Local variables */ integer i__, j, k, m, n; doublereal z__[3]; integer k1, in, kl, ku, ix, nt, lda; char fact[1]; doublereal cond; integer mode, koff, imat, info; char path[3], dist[1], type__[1]; integer nrun, ifact, nfail, iseed[4]; extern doublereal dget06_(doublereal *, doublereal *); doublereal rcond; integer nimat; doublereal anorm; integer itran; extern /* Subroutine */ int zget04_(integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal * ); char trans[1]; integer izero, nerrs; extern /* Subroutine */ int zgtt01_(integer *, doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex * , doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *), zgtt02_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *), zgtt05_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublereal *); logical zerot; extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, doublecomplex *, integer *), zgtsv_(integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex * , integer *, integer *), zlatb4_(char *, integer *, integer *, integer *, char *, integer *, integer *, doublereal *, integer *, doublereal *, char *), aladhd_(integer *, char *), alaerh_(char *, char *, integer *, integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *); doublereal rcondc, rcondi; extern /* Subroutine */ int zdscal_(integer *, doublereal *, doublecomplex *, integer *), alasvm_(char *, integer *, integer *, integer *, integer *); doublereal rcondo, anormi, ainvnm; logical trfcon; doublereal anormo; extern /* Subroutine */ int zlagtm_(char *, integer *, integer *, doublereal *, doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex *, integer *, doublereal *, doublecomplex *, integer *); extern doublereal zlangt_(char *, integer *, doublecomplex *, doublecomplex *, doublecomplex *); extern /* Subroutine */ int zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *); extern doublereal dzasum_(integer *, doublecomplex *, integer *); extern /* Subroutine */ int zlaset_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *), zlatms_(integer *, integer *, char *, integer *, char *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, char *, doublecomplex *, integer *, doublecomplex *, integer *), zlarnv_(integer *, integer *, integer *, doublecomplex *); doublereal result[6]; extern /* Subroutine */ int zgttrf_(integer *, doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex *, integer *, integer *), zgttrs_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, integer *), zerrvx_(char *, integer *), zgtsvx_(char *, char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex * , doublecomplex *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublereal *, doublecomplex *, doublereal *, integer *); /* Fortran I/O blocks */ static cilist io___42 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___46 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___47 = { 0, 0, 0, fmt_9998, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZDRVGT tests ZGTSV and -SVX. */ /* Arguments */ /* ========= */ /* DOTYPE (input) LOGICAL array, dimension (NTYPES) */ /* The matrix types to be used for testing. Matrices of type j */ /* (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */ /* .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */ /* NN (input) INTEGER */ /* The number of values of N contained in the vector NVAL. */ /* NVAL (input) INTEGER array, dimension (NN) */ /* The values of the matrix dimension N. */ /* THRESH (input) DOUBLE PRECISION */ /* The threshold value for the test ratios. A result is */ /* included in the output file if RESULT >= THRESH. To have */ /* every test ratio printed, use THRESH = 0. */ /* TSTERR (input) LOGICAL */ /* Flag that indicates whether error exits are to be tested. */ /* A (workspace) COMPLEX*16 array, dimension (NMAX*4) */ /* AF (workspace) COMPLEX*16 array, dimension (NMAX*4) */ /* B (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) */ /* X (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) */ /* XACT (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) */ /* WORK (workspace) COMPLEX*16 array, dimension */ /* (NMAX*max(3,NRHS)) */ /* RWORK (workspace) DOUBLE PRECISION array, dimension (NMAX+2*NRHS) */ /* IWORK (workspace) INTEGER array, dimension (2*NMAX) */ /* NOUT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --iwork; --rwork; --work; --xact; --x; --b; --af; --a; --nval; --dotype; /* Function Body */ /* .. */ /* .. Executable Statements .. */ s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "GT", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { zerrvx_(path, nout); } infoc_1.infot = 0; i__1 = *nn; for (in = 1; in <= i__1; ++in) { /* Do for each value of N in NVAL. */ n = nval[in]; /* Computing MAX */ i__2 = n - 1; m = max(i__2,0); lda = max(1,n); nimat = 12; if (n <= 0) { nimat = 1; } i__2 = nimat; for (imat = 1; imat <= i__2; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L130; } /* Set up parameters with ZLATB4. */ zlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, & cond, dist); zerot = imat >= 8 && imat <= 10; if (imat <= 6) { /* Types 1-6: generate matrices of known condition number. */ /* Computing MAX */ i__3 = 2 - ku, i__4 = 3 - max(1,n); koff = max(i__3,i__4); s_copy(srnamc_1.srnamt, "ZLATMS", (ftnlen)32, (ftnlen)6); zlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &cond, &anorm, &kl, &ku, "Z", &af[koff], &c__3, &work[1], & info); /* Check the error code from ZLATMS. */ if (info != 0) { alaerh_(path, "ZLATMS", &info, &c__0, " ", &n, &n, &kl, & ku, &c_n1, &imat, &nfail, &nerrs, nout); goto L130; } izero = 0; if (n > 1) { i__3 = n - 1; zcopy_(&i__3, &af[4], &c__3, &a[1], &c__1); i__3 = n - 1; zcopy_(&i__3, &af[3], &c__3, &a[n + m + 1], &c__1); } zcopy_(&n, &af[2], &c__3, &a[m + 1], &c__1); } else { /* Types 7-12: generate tridiagonal matrices with */ /* unknown condition numbers. */ if (! zerot || ! dotype[7]) { /* Generate a matrix with elements from [-1,1]. */ i__3 = n + (m << 1); zlarnv_(&c__2, iseed, &i__3, &a[1]); if (anorm != 1.) { i__3 = n + (m << 1); zdscal_(&i__3, &anorm, &a[1], &c__1); } } else if (izero > 0) { /* Reuse the last matrix by copying back the zeroed out */ /* elements. */ if (izero == 1) { i__3 = n; a[i__3].r = z__[1], a[i__3].i = 0.; if (n > 1) { a[1].r = z__[2], a[1].i = 0.; } } else if (izero == n) { i__3 = n * 3 - 2; a[i__3].r = z__[0], a[i__3].i = 0.; i__3 = (n << 1) - 1; a[i__3].r = z__[1], a[i__3].i = 0.; } else { i__3 = (n << 1) - 2 + izero; a[i__3].r = z__[0], a[i__3].i = 0.; i__3 = n - 1 + izero; a[i__3].r = z__[1], a[i__3].i = 0.; i__3 = izero; a[i__3].r = z__[2], a[i__3].i = 0.; } } /* If IMAT > 7, set one column of the matrix to 0. */ if (! zerot) { izero = 0; } else if (imat == 8) { izero = 1; i__3 = n; z__[1] = a[i__3].r; i__3 = n; a[i__3].r = 0., a[i__3].i = 0.; if (n > 1) { z__[2] = a[1].r; a[1].r = 0., a[1].i = 0.; } } else if (imat == 9) { izero = n; i__3 = n * 3 - 2; z__[0] = a[i__3].r; i__3 = (n << 1) - 1; z__[1] = a[i__3].r; i__3 = n * 3 - 2; a[i__3].r = 0., a[i__3].i = 0.; i__3 = (n << 1) - 1; a[i__3].r = 0., a[i__3].i = 0.; } else { izero = (n + 1) / 2; i__3 = n - 1; for (i__ = izero; i__ <= i__3; ++i__) { i__4 = (n << 1) - 2 + i__; a[i__4].r = 0., a[i__4].i = 0.; i__4 = n - 1 + i__; a[i__4].r = 0., a[i__4].i = 0.; i__4 = i__; a[i__4].r = 0., a[i__4].i = 0.; /* L20: */ } i__3 = n * 3 - 2; a[i__3].r = 0., a[i__3].i = 0.; i__3 = (n << 1) - 1; a[i__3].r = 0., a[i__3].i = 0.; } } for (ifact = 1; ifact <= 2; ++ifact) { if (ifact == 1) { *(unsigned char *)fact = 'F'; } else { *(unsigned char *)fact = 'N'; } /* Compute the condition number for comparison with */ /* the value returned by ZGTSVX. */ if (zerot) { if (ifact == 1) { goto L120; } rcondo = 0.; rcondi = 0.; } else if (ifact == 1) { i__3 = n + (m << 1); zcopy_(&i__3, &a[1], &c__1, &af[1], &c__1); /* Compute the 1-norm and infinity-norm of A. */ anormo = zlangt_("1", &n, &a[1], &a[m + 1], &a[n + m + 1]); anormi = zlangt_("I", &n, &a[1], &a[m + 1], &a[n + m + 1]); /* Factor the matrix A. */ zgttrf_(&n, &af[1], &af[m + 1], &af[n + m + 1], &af[n + ( m << 1) + 1], &iwork[1], &info); /* Use ZGTTRS to solve for one column at a time of */ /* inv(A), computing the maximum column sum as we go. */ ainvnm = 0.; i__3 = n; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = n; for (j = 1; j <= i__4; ++j) { i__5 = j; x[i__5].r = 0., x[i__5].i = 0.; /* L30: */ } i__4 = i__; x[i__4].r = 1., x[i__4].i = 0.; zgttrs_("No transpose", &n, &c__1, &af[1], &af[m + 1], &af[n + m + 1], &af[n + (m << 1) + 1], & iwork[1], &x[1], &lda, &info); /* Computing MAX */ d__1 = ainvnm, d__2 = dzasum_(&n, &x[1], &c__1); ainvnm = max(d__1,d__2); /* L40: */ } /* Compute the 1-norm condition number of A. */ if (anormo <= 0. || ainvnm <= 0.) { rcondo = 1.; } else { rcondo = 1. / anormo / ainvnm; } /* Use ZGTTRS to solve for one column at a time of */ /* inv(A'), computing the maximum column sum as we go. */ ainvnm = 0.; i__3 = n; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = n; for (j = 1; j <= i__4; ++j) { i__5 = j; x[i__5].r = 0., x[i__5].i = 0.; /* L50: */ } i__4 = i__; x[i__4].r = 1., x[i__4].i = 0.; zgttrs_("Conjugate transpose", &n, &c__1, &af[1], &af[ m + 1], &af[n + m + 1], &af[n + (m << 1) + 1], &iwork[1], &x[1], &lda, &info); /* Computing MAX */ d__1 = ainvnm, d__2 = dzasum_(&n, &x[1], &c__1); ainvnm = max(d__1,d__2); /* L60: */ } /* Compute the infinity-norm condition number of A. */ if (anormi <= 0. || ainvnm <= 0.) { rcondi = 1.; } else { rcondi = 1. / anormi / ainvnm; } } for (itran = 1; itran <= 3; ++itran) { *(unsigned char *)trans = *(unsigned char *)&transs[itran - 1]; if (itran == 1) { rcondc = rcondo; } else { rcondc = rcondi; } /* Generate NRHS random solution vectors. */ ix = 1; i__3 = *nrhs; for (j = 1; j <= i__3; ++j) { zlarnv_(&c__2, iseed, &n, &xact[ix]); ix += lda; /* L70: */ } /* Set the right hand side. */ zlagtm_(trans, &n, nrhs, &c_b43, &a[1], &a[m + 1], &a[n + m + 1], &xact[1], &lda, &c_b44, &b[1], &lda); if (ifact == 2 && itran == 1) { /* --- Test ZGTSV --- */ /* Solve the system using Gaussian elimination with */ /* partial pivoting. */ i__3 = n + (m << 1); zcopy_(&i__3, &a[1], &c__1, &af[1], &c__1); zlacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], &lda); s_copy(srnamc_1.srnamt, "ZGTSV ", (ftnlen)32, (ftnlen) 6); zgtsv_(&n, nrhs, &af[1], &af[m + 1], &af[n + m + 1], & x[1], &lda, &info); /* Check error code from ZGTSV . */ if (info != izero) { alaerh_(path, "ZGTSV ", &info, &izero, " ", &n, & n, &c__1, &c__1, nrhs, &imat, &nfail, & nerrs, nout); } nt = 1; if (izero == 0) { /* Check residual of computed solution. */ zlacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], & lda); zgtt02_(trans, &n, nrhs, &a[1], &a[m + 1], &a[n + m + 1], &x[1], &lda, &work[1], &lda, & rwork[1], &result[1]); /* Check solution from generated exact solution. */ zget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[2]); nt = 3; } /* Print information about the tests that did not pass */ /* the threshold. */ i__3 = nt; for (k = 2; k <= i__3; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } io___42.ciunit = *nout; s_wsfe(&io___42); do_fio(&c__1, "ZGTSV ", (ftnlen)6); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen) sizeof(doublereal)); e_wsfe(); ++nfail; } /* L80: */ } nrun = nrun + nt - 1; } /* --- Test ZGTSVX --- */ if (ifact > 1) { /* Initialize AF to zero. */ i__3 = n * 3 - 2; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = i__; af[i__4].r = 0., af[i__4].i = 0.; /* L90: */ } } zlaset_("Full", &n, nrhs, &c_b65, &c_b65, &x[1], &lda); /* Solve the system and compute the condition number and */ /* error bounds using ZGTSVX. */ s_copy(srnamc_1.srnamt, "ZGTSVX", (ftnlen)32, (ftnlen)6); zgtsvx_(fact, trans, &n, nrhs, &a[1], &a[m + 1], &a[n + m + 1], &af[1], &af[m + 1], &af[n + m + 1], &af[n + (m << 1) + 1], &iwork[1], &b[1], &lda, &x[1], & lda, &rcond, &rwork[1], &rwork[*nrhs + 1], &work[ 1], &rwork[(*nrhs << 1) + 1], &info); /* Check the error code from ZGTSVX. */ if (info != izero) { /* Writing concatenation */ i__6[0] = 1, a__1[0] = fact; i__6[1] = 1, a__1[1] = trans; s_cat(ch__1, a__1, i__6, &c__2, (ftnlen)2); alaerh_(path, "ZGTSVX", &info, &izero, ch__1, &n, &n, &c__1, &c__1, nrhs, &imat, &nfail, &nerrs, nout); } if (ifact >= 2) { /* Reconstruct matrix from factors and compute */ /* residual. */ zgtt01_(&n, &a[1], &a[m + 1], &a[n + m + 1], &af[1], & af[m + 1], &af[n + m + 1], &af[n + (m << 1) + 1], &iwork[1], &work[1], &lda, &rwork[1], result); k1 = 1; } else { k1 = 2; } if (info == 0) { trfcon = FALSE_; /* Check residual of computed solution. */ zlacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda); zgtt02_(trans, &n, nrhs, &a[1], &a[m + 1], &a[n + m + 1], &x[1], &lda, &work[1], &lda, &rwork[1], & result[1]); /* Check solution from generated exact solution. */ zget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[2]); /* Check the error bounds from iterative refinement. */ zgtt05_(trans, &n, nrhs, &a[1], &a[m + 1], &a[n + m + 1], &b[1], &lda, &x[1], &lda, &xact[1], &lda, &rwork[1], &rwork[*nrhs + 1], &result[3]); nt = 5; } /* Print information about the tests that did not pass */ /* the threshold. */ i__3 = nt; for (k = k1; k <= i__3; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } io___46.ciunit = *nout; s_wsfe(&io___46); do_fio(&c__1, "ZGTSVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&result[k - 1], (ftnlen) sizeof(doublereal)); e_wsfe(); ++nfail; } /* L100: */ } /* Check the reciprocal of the condition number. */ result[5] = dget06_(&rcond, &rcondc); if (result[5] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } io___47.ciunit = *nout; s_wsfe(&io___47); do_fio(&c__1, "ZGTSVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof( doublereal)); e_wsfe(); ++nfail; } nrun = nrun + nt - k1 + 2; /* L110: */ } L120: ; } L130: ; } /* L140: */ } /* Print a summary of the results. */ alasvm_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of ZDRVGT */ } /* zdrvgt_ */