/* spst01.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; static real c_b18 = 1.f; /* Subroutine */ int spst01_(char *uplo, integer *n, real *a, integer *lda, real *afac, integer *ldafac, real *perm, integer *ldperm, integer * piv, real *rwork, real *resid, integer *rank) { /* System generated locals */ integer a_dim1, a_offset, afac_dim1, afac_offset, perm_dim1, perm_offset, i__1, i__2; /* Local variables */ integer i__, j, k; real t, eps; extern doublereal sdot_(integer *, real *, integer *, real *, integer *); extern /* Subroutine */ int ssyr_(char *, integer *, real *, real *, integer *, real *, integer *); extern logical lsame_(char *, char *); extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *); real anorm; extern /* Subroutine */ int strmv_(char *, char *, char *, integer *, real *, integer *, real *, integer *); extern doublereal slamch_(char *), slansy_(char *, char *, integer *, real *, integer *, real *); /* -- LAPACK test routine (version 3.1) -- */ /* Craig Lucas, University of Manchester / NAG Ltd. */ /* October, 2008 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SPST01 reconstructs a symmetric positive semidefinite matrix A */ /* from its L or U factors and the permutation matrix P and computes */ /* the residual */ /* norm( P*L*L'*P' - A ) / ( N * norm(A) * EPS ) or */ /* norm( P*U'*U*P' - A ) / ( N * norm(A) * EPS ), */ /* where EPS is the machine epsilon. */ /* Arguments */ /* ========== */ /* UPLO (input) CHARACTER*1 */ /* Specifies whether the upper or lower triangular part of the */ /* symmetric matrix A is stored: */ /* = 'U': Upper triangular */ /* = 'L': Lower triangular */ /* N (input) INTEGER */ /* The number of rows and columns of the matrix A. N >= 0. */ /* A (input) REAL array, dimension (LDA,N) */ /* The original symmetric matrix A. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N) */ /* AFAC (input) REAL array, dimension (LDAFAC,N) */ /* The factor L or U from the L*L' or U'*U */ /* factorization of A. */ /* LDAFAC (input) INTEGER */ /* The leading dimension of the array AFAC. LDAFAC >= max(1,N). */ /* PERM (output) REAL array, dimension (LDPERM,N) */ /* Overwritten with the reconstructed matrix, and then with the */ /* difference P*L*L'*P' - A (or P*U'*U*P' - A) */ /* LDPERM (input) INTEGER */ /* The leading dimension of the array PERM. */ /* LDAPERM >= max(1,N). */ /* PIV (input) INTEGER array, dimension (N) */ /* PIV is such that the nonzero entries are */ /* P( PIV( K ), K ) = 1. */ /* RWORK (workspace) REAL array, dimension (N) */ /* RESID (output) REAL */ /* If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS ) */ /* If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS ) */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Quick exit if N = 0. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; afac_dim1 = *ldafac; afac_offset = 1 + afac_dim1; afac -= afac_offset; perm_dim1 = *ldperm; perm_offset = 1 + perm_dim1; perm -= perm_offset; --piv; --rwork; /* Function Body */ if (*n <= 0) { *resid = 0.f; return 0; } /* Exit with RESID = 1/EPS if ANORM = 0. */ eps = slamch_("Epsilon"); anorm = slansy_("1", uplo, n, &a[a_offset], lda, &rwork[1]); if (anorm <= 0.f) { *resid = 1.f / eps; return 0; } /* Compute the product U'*U, overwriting U. */ if (lsame_(uplo, "U")) { if (*rank < *n) { i__1 = *n; for (j = *rank + 1; j <= i__1; ++j) { i__2 = j; for (i__ = *rank + 1; i__ <= i__2; ++i__) { afac[i__ + j * afac_dim1] = 0.f; /* L100: */ } /* L110: */ } } for (k = *n; k >= 1; --k) { /* Compute the (K,K) element of the result. */ t = sdot_(&k, &afac[k * afac_dim1 + 1], &c__1, &afac[k * afac_dim1 + 1], &c__1); afac[k + k * afac_dim1] = t; /* Compute the rest of column K. */ i__1 = k - 1; strmv_("Upper", "Transpose", "Non-unit", &i__1, &afac[afac_offset] , ldafac, &afac[k * afac_dim1 + 1], &c__1); /* L120: */ } /* Compute the product L*L', overwriting L. */ } else { if (*rank < *n) { i__1 = *n; for (j = *rank + 1; j <= i__1; ++j) { i__2 = *n; for (i__ = j; i__ <= i__2; ++i__) { afac[i__ + j * afac_dim1] = 0.f; /* L130: */ } /* L140: */ } } for (k = *n; k >= 1; --k) { /* Add a multiple of column K of the factor L to each of */ /* columns K+1 through N. */ if (k + 1 <= *n) { i__1 = *n - k; ssyr_("Lower", &i__1, &c_b18, &afac[k + 1 + k * afac_dim1], & c__1, &afac[k + 1 + (k + 1) * afac_dim1], ldafac); } /* Scale column K by the diagonal element. */ t = afac[k + k * afac_dim1]; i__1 = *n - k + 1; sscal_(&i__1, &t, &afac[k + k * afac_dim1], &c__1); /* L150: */ } } /* Form P*L*L'*P' or P*U'*U*P' */ if (lsame_(uplo, "U")) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { if (piv[i__] <= piv[j]) { if (i__ <= j) { perm[piv[i__] + piv[j] * perm_dim1] = afac[i__ + j * afac_dim1]; } else { perm[piv[i__] + piv[j] * perm_dim1] = afac[j + i__ * afac_dim1]; } } /* L160: */ } /* L170: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { if (piv[i__] >= piv[j]) { if (i__ >= j) { perm[piv[i__] + piv[j] * perm_dim1] = afac[i__ + j * afac_dim1]; } else { perm[piv[i__] + piv[j] * perm_dim1] = afac[j + i__ * afac_dim1]; } } /* L180: */ } /* L190: */ } } /* Compute the difference P*L*L'*P' - A (or P*U'*U*P' - A). */ if (lsame_(uplo, "U")) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j; for (i__ = 1; i__ <= i__2; ++i__) { perm[i__ + j * perm_dim1] -= a[i__ + j * a_dim1]; /* L200: */ } /* L210: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = j; i__ <= i__2; ++i__) { perm[i__ + j * perm_dim1] -= a[i__ + j * a_dim1]; /* L220: */ } /* L230: */ } } /* Compute norm( P*L*L'P - A ) / ( N * norm(A) * EPS ), or */ /* ( P*U'*U*P' - A )/ ( N * norm(A) * EPS ). */ *resid = slansy_("1", uplo, n, &perm[perm_offset], ldafac, &rwork[1]); *resid = *resid / (real) (*n) / anorm / eps; return 0; /* End of SPST01 */ } /* spst01_ */