/* schkpt.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Common Block Declarations */ struct { integer infot, nunit; logical ok, lerr; } infoc_; #define infoc_1 infoc_ struct { char srnamt[32]; } srnamc_; #define srnamc_1 srnamc_ /* Table of constant values */ static integer c__2 = 2; static integer c__0 = 0; static integer c_n1 = -1; static integer c__1 = 1; static real c_b46 = 1.f; static real c_b47 = 0.f; static integer c__7 = 7; /* Subroutine */ int schkpt_(logical *dotype, integer *nn, integer *nval, integer *nns, integer *nsval, real *thresh, logical *tsterr, real *a, real *d__, real *e, real *b, real *x, real *xact, real *work, real * rwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 0,0,0,1 }; /* Format strings */ static char fmt_9999[] = "(\002 N =\002,i5,\002, type \002,i2,\002, te" "st \002,i2,\002, ratio = \002,g12.5)"; static char fmt_9998[] = "(\002 N =\002,i5,\002, NRHS=\002,i3,\002, ty" "pe \002,i2,\002, test(\002,i2,\002) = \002,g12.5)"; /* System generated locals */ integer i__1, i__2, i__3, i__4; real r__1, r__2, r__3; /* Builtin functions */ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Local variables */ integer i__, j, k, n; real z__[3]; integer ia, in, kl, ku, ix, lda; real cond; integer mode; real dmax__; integer imat, info; char path[3], dist[1]; integer irhs, nrhs; char type__[1]; integer nrun; extern /* Subroutine */ int alahd_(integer *, char *); integer nfail, iseed[4]; real rcond; extern /* Subroutine */ int sget04_(integer *, integer *, real *, integer *, real *, integer *, real *, real *), sscal_(integer *, real *, real *, integer *); integer nimat; extern doublereal sget06_(real *, real *); real anorm; integer izero, nerrs; extern doublereal sasum_(integer *, real *, integer *); extern /* Subroutine */ int sptt01_(integer *, real *, real *, real *, real *, real *, real *), sptt02_(integer *, integer *, real *, real *, real *, integer *, real *, integer *, real *), scopy_( integer *, real *, integer *, real *, integer *), sptt05_(integer *, integer *, real *, real *, real *, integer *, real *, integer * , real *, integer *, real *, real *, real *); logical zerot; extern /* Subroutine */ int slatb4_(char *, integer *, integer *, integer *, char *, integer *, integer *, real *, integer *, real *, char * ), alaerh_(char *, char *, integer *, integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *); real rcondc; extern integer isamax_(integer *, real *, integer *); extern /* Subroutine */ int alasum_(char *, integer *, integer *, integer *, integer *); real ainvnm; extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *), slaptm_(integer *, integer *, real *, real *, real *, real *, integer *, real *, real *, integer *), slatms_(integer *, integer *, char *, integer *, char *, real *, integer *, real *, real *, integer *, integer *, char * , real *, integer *, real *, integer *); extern doublereal slanst_(char *, integer *, real *, real *); extern /* Subroutine */ int serrgt_(char *, integer *), slarnv_( integer *, integer *, integer *, real *), sptcon_(integer *, real *, real *, real *, real *, real *, integer *); real result[7]; extern /* Subroutine */ int sptrfs_(integer *, integer *, real *, real *, real *, real *, real *, integer *, real *, integer *, real *, real *, real *, integer *), spttrf_(integer *, real *, real *, integer *), spttrs_(integer *, integer *, real *, real *, real *, integer *, integer *); /* Fortran I/O blocks */ static cilist io___29 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___35 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___37 = { 0, 0, 0, fmt_9999, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SCHKPT tests SPTTRF, -TRS, -RFS, and -CON */ /* Arguments */ /* ========= */ /* DOTYPE (input) LOGICAL array, dimension (NTYPES) */ /* The matrix types to be used for testing. Matrices of type j */ /* (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */ /* .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */ /* NN (input) INTEGER */ /* The number of values of N contained in the vector NVAL. */ /* NVAL (input) INTEGER array, dimension (NN) */ /* The values of the matrix dimension N. */ /* NNS (input) INTEGER */ /* The number of values of NRHS contained in the vector NSVAL. */ /* NSVAL (input) INTEGER array, dimension (NNS) */ /* The values of the number of right hand sides NRHS. */ /* THRESH (input) REAL */ /* The threshold value for the test ratios. A result is */ /* included in the output file if RESULT >= THRESH. To have */ /* every test ratio printed, use THRESH = 0. */ /* TSTERR (input) LOGICAL */ /* Flag that indicates whether error exits are to be tested. */ /* A (workspace) REAL array, dimension (NMAX*2) */ /* D (workspace) REAL array, dimension (NMAX*2) */ /* E (workspace) REAL array, dimension (NMAX*2) */ /* B (workspace) REAL array, dimension (NMAX*NSMAX) */ /* where NSMAX is the largest entry in NSVAL. */ /* X (workspace) REAL array, dimension (NMAX*NSMAX) */ /* XACT (workspace) REAL array, dimension (NMAX*NSMAX) */ /* WORK (workspace) REAL array, dimension */ /* (NMAX*max(3,NSMAX)) */ /* RWORK (workspace) REAL array, dimension */ /* (max(NMAX,2*NSMAX)) */ /* NOUT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --rwork; --work; --xact; --x; --b; --e; --d__; --a; --nsval; --nval; --dotype; /* Function Body */ /* .. */ /* .. Executable Statements .. */ s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16); s_copy(path + 1, "PT", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { serrgt_(path, nout); } infoc_1.infot = 0; i__1 = *nn; for (in = 1; in <= i__1; ++in) { /* Do for each value of N in NVAL. */ n = nval[in]; lda = max(1,n); nimat = 12; if (n <= 0) { nimat = 1; } i__2 = nimat; for (imat = 1; imat <= i__2; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (n > 0 && ! dotype[imat]) { goto L100; } /* Set up parameters with SLATB4. */ slatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, & cond, dist); zerot = imat >= 8 && imat <= 10; if (imat <= 6) { /* Type 1-6: generate a symmetric tridiagonal matrix of */ /* known condition number in lower triangular band storage. */ s_copy(srnamc_1.srnamt, "SLATMS", (ftnlen)32, (ftnlen)6); slatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &cond, &anorm, &kl, &ku, "B", &a[1], &c__2, &work[1], &info); /* Check the error code from SLATMS. */ if (info != 0) { alaerh_(path, "SLATMS", &info, &c__0, " ", &n, &n, &kl, & ku, &c_n1, &imat, &nfail, &nerrs, nout); goto L100; } izero = 0; /* Copy the matrix to D and E. */ ia = 1; i__3 = n - 1; for (i__ = 1; i__ <= i__3; ++i__) { d__[i__] = a[ia]; e[i__] = a[ia + 1]; ia += 2; /* L20: */ } if (n > 0) { d__[n] = a[ia]; } } else { /* Type 7-12: generate a diagonally dominant matrix with */ /* unknown condition number in the vectors D and E. */ if (! zerot || ! dotype[7]) { /* Let D and E have values from [-1,1]. */ slarnv_(&c__2, iseed, &n, &d__[1]); i__3 = n - 1; slarnv_(&c__2, iseed, &i__3, &e[1]); /* Make the tridiagonal matrix diagonally dominant. */ if (n == 1) { d__[1] = dabs(d__[1]); } else { d__[1] = dabs(d__[1]) + dabs(e[1]); d__[n] = (r__1 = d__[n], dabs(r__1)) + (r__2 = e[n - 1], dabs(r__2)); i__3 = n - 1; for (i__ = 2; i__ <= i__3; ++i__) { d__[i__] = (r__1 = d__[i__], dabs(r__1)) + (r__2 = e[i__], dabs(r__2)) + (r__3 = e[i__ - 1], dabs(r__3)); /* L30: */ } } /* Scale D and E so the maximum element is ANORM. */ ix = isamax_(&n, &d__[1], &c__1); dmax__ = d__[ix]; r__1 = anorm / dmax__; sscal_(&n, &r__1, &d__[1], &c__1); i__3 = n - 1; r__1 = anorm / dmax__; sscal_(&i__3, &r__1, &e[1], &c__1); } else if (izero > 0) { /* Reuse the last matrix by copying back the zeroed out */ /* elements. */ if (izero == 1) { d__[1] = z__[1]; if (n > 1) { e[1] = z__[2]; } } else if (izero == n) { e[n - 1] = z__[0]; d__[n] = z__[1]; } else { e[izero - 1] = z__[0]; d__[izero] = z__[1]; e[izero] = z__[2]; } } /* For types 8-10, set one row and column of the matrix to */ /* zero. */ izero = 0; if (imat == 8) { izero = 1; z__[1] = d__[1]; d__[1] = 0.f; if (n > 1) { z__[2] = e[1]; e[1] = 0.f; } } else if (imat == 9) { izero = n; if (n > 1) { z__[0] = e[n - 1]; e[n - 1] = 0.f; } z__[1] = d__[n]; d__[n] = 0.f; } else if (imat == 10) { izero = (n + 1) / 2; if (izero > 1) { z__[0] = e[izero - 1]; e[izero - 1] = 0.f; z__[2] = e[izero]; e[izero] = 0.f; } z__[1] = d__[izero]; d__[izero] = 0.f; } } scopy_(&n, &d__[1], &c__1, &d__[n + 1], &c__1); if (n > 1) { i__3 = n - 1; scopy_(&i__3, &e[1], &c__1, &e[n + 1], &c__1); } /* + TEST 1 */ /* Factor A as L*D*L' and compute the ratio */ /* norm(L*D*L' - A) / (n * norm(A) * EPS ) */ spttrf_(&n, &d__[n + 1], &e[n + 1], &info); /* Check error code from SPTTRF. */ if (info != izero) { alaerh_(path, "SPTTRF", &info, &izero, " ", &n, &n, &c_n1, & c_n1, &c_n1, &imat, &nfail, &nerrs, nout); goto L100; } if (info > 0) { rcondc = 0.f; goto L90; } sptt01_(&n, &d__[1], &e[1], &d__[n + 1], &e[n + 1], &work[1], result); /* Print the test ratio if greater than or equal to THRESH. */ if (result[0] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___29.ciunit = *nout; s_wsfe(&io___29); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__1, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[0], (ftnlen)sizeof(real)); e_wsfe(); ++nfail; } ++nrun; /* Compute RCONDC = 1 / (norm(A) * norm(inv(A)) */ /* Compute norm(A). */ anorm = slanst_("1", &n, &d__[1], &e[1]); /* Use SPTTRS to solve for one column at a time of inv(A), */ /* computing the maximum column sum as we go. */ ainvnm = 0.f; i__3 = n; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = n; for (j = 1; j <= i__4; ++j) { x[j] = 0.f; /* L40: */ } x[i__] = 1.f; spttrs_(&n, &c__1, &d__[n + 1], &e[n + 1], &x[1], &lda, &info) ; /* Computing MAX */ r__1 = ainvnm, r__2 = sasum_(&n, &x[1], &c__1); ainvnm = dmax(r__1,r__2); /* L50: */ } /* Computing MAX */ r__1 = 1.f, r__2 = anorm * ainvnm; rcondc = 1.f / dmax(r__1,r__2); i__3 = *nns; for (irhs = 1; irhs <= i__3; ++irhs) { nrhs = nsval[irhs]; /* Generate NRHS random solution vectors. */ ix = 1; i__4 = nrhs; for (j = 1; j <= i__4; ++j) { slarnv_(&c__2, iseed, &n, &xact[ix]); ix += lda; /* L60: */ } /* Set the right hand side. */ slaptm_(&n, &nrhs, &c_b46, &d__[1], &e[1], &xact[1], &lda, & c_b47, &b[1], &lda); /* + TEST 2 */ /* Solve A*x = b and compute the residual. */ slacpy_("Full", &n, &nrhs, &b[1], &lda, &x[1], &lda); spttrs_(&n, &nrhs, &d__[n + 1], &e[n + 1], &x[1], &lda, &info) ; /* Check error code from SPTTRS. */ if (info != 0) { alaerh_(path, "SPTTRS", &info, &c__0, " ", &n, &n, &c_n1, &c_n1, &nrhs, &imat, &nfail, &nerrs, nout); } slacpy_("Full", &n, &nrhs, &b[1], &lda, &work[1], &lda); sptt02_(&n, &nrhs, &d__[1], &e[1], &x[1], &lda, &work[1], & lda, &result[1]); /* + TEST 3 */ /* Check solution from generated exact solution. */ sget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, & result[2]); /* + TESTS 4, 5, and 6 */ /* Use iterative refinement to improve the solution. */ s_copy(srnamc_1.srnamt, "SPTRFS", (ftnlen)32, (ftnlen)6); sptrfs_(&n, &nrhs, &d__[1], &e[1], &d__[n + 1], &e[n + 1], &b[ 1], &lda, &x[1], &lda, &rwork[1], &rwork[nrhs + 1], & work[1], &info); /* Check error code from SPTRFS. */ if (info != 0) { alaerh_(path, "SPTRFS", &info, &c__0, " ", &n, &n, &c_n1, &c_n1, &nrhs, &imat, &nfail, &nerrs, nout); } sget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, & result[3]); sptt05_(&n, &nrhs, &d__[1], &e[1], &b[1], &lda, &x[1], &lda, & xact[1], &lda, &rwork[1], &rwork[nrhs + 1], &result[4] ); /* Print information about the tests that did not pass the */ /* threshold. */ for (k = 2; k <= 6; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___35.ciunit = *nout; s_wsfe(&io___35); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&nrhs, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof( real)); e_wsfe(); ++nfail; } /* L70: */ } nrun += 5; /* L80: */ } /* + TEST 7 */ /* Estimate the reciprocal of the condition number of the */ /* matrix. */ L90: s_copy(srnamc_1.srnamt, "SPTCON", (ftnlen)32, (ftnlen)6); sptcon_(&n, &d__[n + 1], &e[n + 1], &anorm, &rcond, &rwork[1], & info); /* Check error code from SPTCON. */ if (info != 0) { alaerh_(path, "SPTCON", &info, &c__0, " ", &n, &n, &c_n1, & c_n1, &c_n1, &imat, &nfail, &nerrs, nout); } result[6] = sget06_(&rcond, &rcondc); /* Print the test ratio if greater than or equal to THRESH. */ if (result[6] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___37.ciunit = *nout; s_wsfe(&io___37); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__7, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[6], (ftnlen)sizeof(real)); e_wsfe(); ++nfail; } ++nrun; L100: ; } /* L110: */ } /* Print a summary of the results. */ alasum_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of SCHKPT */ } /* schkpt_ */