/* ddrvrf3.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Common Block Declarations */ struct { char srnamt[32]; } srnamc_; #define srnamc_1 srnamc_ /* Table of constant values */ static integer c__2 = 2; static integer c__1 = 1; /* Subroutine */ int ddrvrf3_(integer *nout, integer *nn, integer *nval, doublereal *thresh, doublereal *a, integer *lda, doublereal *arf, doublereal *b1, doublereal *b2, doublereal *d_work_dlange__, doublereal *d_work_dgeqrf__, doublereal *tau) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; static char uplos[1*2] = "U" "L"; static char forms[1*2] = "N" "T"; static char sides[1*2] = "L" "R"; static char transs[1*2] = "N" "T"; static char diags[1*2] = "N" "U"; /* Format strings */ static char fmt_9999[] = "(1x,\002 *** Error(s) or Failure(s) while test" "ing DTFSM ***\002)"; static char fmt_9997[] = "(1x,\002 Failure in \002,a5,\002, CFORM=" "'\002,a1,\002',\002,\002 SIDE='\002,a1,\002',\002,\002 UPLO='" "\002,a1,\002',\002,\002 TRANS='\002,a1,\002',\002,\002 DIAG='" "\002,a1,\002',\002,\002 M=\002,i3,\002, N =\002,i3,\002, test" "=\002,g12.5)"; static char fmt_9996[] = "(1x,\002All tests for \002,a5,\002 auxiliary r" "outine passed the \002,\002threshold (\002,i5,\002 tests run)" "\002)"; static char fmt_9995[] = "(1x,a6,\002 auxiliary routine:\002,i5,\002 out" " of \002,i5,\002 tests failed to pass the threshold\002)"; /* System generated locals */ integer a_dim1, a_offset, b1_dim1, b1_offset, b2_dim1, b2_offset, i__1, i__2, i__3, i__4; /* Builtin functions */ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); double sqrt(doublereal); integer s_wsle(cilist *), e_wsle(void), s_wsfe(cilist *), e_wsfe(void), do_fio(integer *, char *, ftnlen); /* Local variables */ integer i__, j, m, n, na, iim, iin; doublereal eps; char diag[1], side[1]; integer info; char uplo[1]; integer nrun, idiag; doublereal alpha; integer nfail, iseed[4], iside; char cform[1]; integer iform; extern /* Subroutine */ int dtfsm_(char *, char *, char *, char *, char *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *); char trans[1]; integer iuplo; extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *); extern doublereal dlamch_(char *), dlange_(char *, integer *, integer *, doublereal *, integer *, doublereal *); integer ialpha; extern /* Subroutine */ int dgelqf_(integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *); extern doublereal dlarnd_(integer *, integer *); extern /* Subroutine */ int dgeqrf_(integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *); integer itrans; extern /* Subroutine */ int dtrttf_(char *, char *, integer *, doublereal *, integer *, doublereal *, integer *); doublereal result[1]; /* Fortran I/O blocks */ static cilist io___32 = { 0, 0, 0, 0, 0 }; static cilist io___33 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___34 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___35 = { 0, 0, 0, fmt_9996, 0 }; static cilist io___36 = { 0, 0, 0, fmt_9995, 0 }; /* -- LAPACK test routine (version 3.2.0) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2008 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DDRVRF3 tests the LAPACK RFP routines: */ /* DTFSM */ /* Arguments */ /* ========= */ /* NOUT (input) INTEGER */ /* The unit number for output. */ /* NN (input) INTEGER */ /* The number of values of N contained in the vector NVAL. */ /* NVAL (input) INTEGER array, dimension (NN) */ /* The values of the matrix dimension N. */ /* THRESH (input) DOUBLE PRECISION */ /* The threshold value for the test ratios. A result is */ /* included in the output file if RESULT >= THRESH. To have */ /* every test ratio printed, use THRESH = 0. */ /* A (workspace) DOUBLE PRECISION array, dimension (LDA,NMAX) */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,NMAX). */ /* ARF (workspace) DOUBLE PRECISION array, dimension ((NMAX*(NMAX+1))/2). */ /* B1 (workspace) DOUBLE PRECISION array, dimension (LDA,NMAX) */ /* B2 (workspace) DOUBLE PRECISION array, dimension (LDA,NMAX) */ /* D_WORK_DLANGE (workspace) DOUBLE PRECISION array, dimension (NMAX) */ /* D_WORK_DGEQRF (workspace) DOUBLE PRECISION array, dimension (NMAX) */ /* TAU (workspace) DOUBLE PRECISION array, dimension (NMAX) */ /* ===================================================================== */ /* .. */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --nval; b2_dim1 = *lda; b2_offset = 1 + b2_dim1; b2 -= b2_offset; b1_dim1 = *lda; b1_offset = 1 + b1_dim1; b1 -= b1_offset; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --arf; --d_work_dlange__; --d_work_dgeqrf__; --tau; /* Function Body */ /* .. */ /* .. Executable Statements .. */ /* Initialize constants and the random number seed. */ nrun = 0; nfail = 0; info = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } eps = dlamch_("Precision"); i__1 = *nn; for (iim = 1; iim <= i__1; ++iim) { m = nval[iim]; i__2 = *nn; for (iin = 1; iin <= i__2; ++iin) { n = nval[iin]; for (iform = 1; iform <= 2; ++iform) { *(unsigned char *)cform = *(unsigned char *)&forms[iform - 1]; for (iuplo = 1; iuplo <= 2; ++iuplo) { *(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1]; for (iside = 1; iside <= 2; ++iside) { *(unsigned char *)side = *(unsigned char *)&sides[ iside - 1]; for (itrans = 1; itrans <= 2; ++itrans) { *(unsigned char *)trans = *(unsigned char *)& transs[itrans - 1]; for (idiag = 1; idiag <= 2; ++idiag) { *(unsigned char *)diag = *(unsigned char *)& diags[idiag - 1]; for (ialpha = 1; ialpha <= 3; ++ialpha) { if (ialpha == 1) { alpha = 0.; } else if (ialpha == 1) { alpha = 1.; } else { alpha = dlarnd_(&c__2, iseed); } /* All the parameters are set: */ /* CFORM, SIDE, UPLO, TRANS, DIAG, M, N, */ /* and ALPHA */ /* READY TO TEST! */ ++nrun; if (iside == 1) { /* The case ISIDE.EQ.1 is when SIDE.EQ.'L' */ /* -> A is M-by-M ( B is M-by-N ) */ na = m; } else { /* The case ISIDE.EQ.2 is when SIDE.EQ.'R' */ /* -> A is N-by-N ( B is M-by-N ) */ na = n; } /* Generate A our NA--by--NA triangular */ /* matrix. */ /* Our test is based on forward error so we */ /* do want A to be well conditionned! To get */ /* a well-conditionned triangular matrix, we */ /* take the R factor of the QR/LQ factorization */ /* of a random matrix. */ i__3 = na; for (j = 1; j <= i__3; ++j) { i__4 = na; for (i__ = 1; i__ <= i__4; ++i__) { a[i__ + j * a_dim1] = dlarnd_(& c__2, iseed); } } if (iuplo == 1) { /* The case IUPLO.EQ.1 is when SIDE.EQ.'U' */ /* -> QR factorization. */ s_copy(srnamc_1.srnamt, "DGEQRF", ( ftnlen)32, (ftnlen)6); dgeqrf_(&na, &na, &a[a_offset], lda, & tau[1], &d_work_dgeqrf__[1], lda, &info); } else { /* The case IUPLO.EQ.2 is when SIDE.EQ.'L' */ /* -> QL factorization. */ s_copy(srnamc_1.srnamt, "DGELQF", ( ftnlen)32, (ftnlen)6); dgelqf_(&na, &na, &a[a_offset], lda, & tau[1], &d_work_dgeqrf__[1], lda, &info); } /* Store a copy of A in RFP format (in ARF). */ s_copy(srnamc_1.srnamt, "DTRTTF", (ftnlen) 32, (ftnlen)6); dtrttf_(cform, uplo, &na, &a[a_offset], lda, &arf[1], &info); /* Generate B1 our M--by--N right-hand side */ /* and store a copy in B2. */ i__3 = n; for (j = 1; j <= i__3; ++j) { i__4 = m; for (i__ = 1; i__ <= i__4; ++i__) { b1[i__ + j * b1_dim1] = dlarnd_(& c__2, iseed); b2[i__ + j * b2_dim1] = b1[i__ + j * b1_dim1]; } } /* Solve op( A ) X = B or X op( A ) = B */ /* with DTRSM */ s_copy(srnamc_1.srnamt, "DTRSM", (ftnlen) 32, (ftnlen)5); dtrsm_(side, uplo, trans, diag, &m, &n, & alpha, &a[a_offset], lda, &b1[ b1_offset], lda); /* Solve op( A ) X = B or X op( A ) = B */ /* with DTFSM */ s_copy(srnamc_1.srnamt, "DTFSM", (ftnlen) 32, (ftnlen)5); dtfsm_(cform, side, uplo, trans, diag, &m, &n, &alpha, &arf[1], &b2[ b2_offset], lda); /* Check that the result agrees. */ i__3 = n; for (j = 1; j <= i__3; ++j) { i__4 = m; for (i__ = 1; i__ <= i__4; ++i__) { b1[i__ + j * b1_dim1] = b2[i__ + j * b2_dim1] - b1[i__ + j * b1_dim1]; } } result[0] = dlange_("I", &m, &n, &b1[ b1_offset], lda, &d_work_dlange__[ 1]); /* Computing MAX */ i__3 = max(m,n); result[0] = result[0] / sqrt(eps) / max( i__3,1); if (result[0] >= *thresh) { if (nfail == 0) { io___32.ciunit = *nout; s_wsle(&io___32); e_wsle(); io___33.ciunit = *nout; s_wsfe(&io___33); e_wsfe(); } io___34.ciunit = *nout; s_wsfe(&io___34); do_fio(&c__1, "DTFSM", (ftnlen)5); do_fio(&c__1, cform, (ftnlen)1); do_fio(&c__1, side, (ftnlen)1); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, diag, (ftnlen)1); do_fio(&c__1, (char *)&m, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[0], ( ftnlen)sizeof(doublereal)); e_wsfe(); ++nfail; } /* L100: */ } /* L110: */ } /* L120: */ } /* L130: */ } /* L140: */ } /* L150: */ } /* L160: */ } /* L170: */ } /* Print a summary of the results. */ if (nfail == 0) { io___35.ciunit = *nout; s_wsfe(&io___35); do_fio(&c__1, "DTFSM", (ftnlen)5); do_fio(&c__1, (char *)&nrun, (ftnlen)sizeof(integer)); e_wsfe(); } else { io___36.ciunit = *nout; s_wsfe(&io___36); do_fio(&c__1, "DTFSM", (ftnlen)5); do_fio(&c__1, (char *)&nfail, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&nrun, (ftnlen)sizeof(integer)); e_wsfe(); } return 0; /* End of DDRVRF3 */ } /* ddrvrf3_ */