/* ddrvpox.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "memory_alloc.h" /* Common Block Declarations */ struct { integer infot, nunit; logical ok, lerr; } infoc_; #define infoc_1 infoc_ struct { char srnamt[32]; } srnamc_; #define srnamc_1 srnamc_ /* Table of constant values */ static integer c__1 = 1; static integer c__2 = 2; static integer c__0 = 0; static integer c_n1 = -1; static doublereal c_b50 = 0.; /* Subroutine */ int ddrvpo_(logical *dotype, integer *nn, integer *nval, integer *nrhs, doublereal *thresh, logical *tsterr, integer *nmax, doublereal *a, doublereal *afac, doublereal *asav, doublereal *b, doublereal *bsav, doublereal *x, doublereal *xact, doublereal *s, doublereal *work, doublereal *rwork, integer *iwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; static char uplos[1*2] = "U" "L"; static char facts[1*3] = "F" "N" "E"; static char equeds[1*2] = "N" "Y"; /* Format strings */ static char fmt_9999[] = "(1x,a,\002, UPLO='\002,a1,\002', N =\002,i5" ",\002, type \002,i1,\002, test(\002,i1,\002)=\002,g12.5)"; static char fmt_9997[] = "(1x,a,\002, FACT='\002,a1,\002', UPLO='\002," "a1,\002', N=\002,i5,\002, EQUED='\002,a1,\002', type \002,i1," "\002, test(\002,i1,\002) =\002,g12.5)"; static char fmt_9998[] = "(1x,a,\002, FACT='\002,a1,\002', UPLO='\002," "a1,\002', N=\002,i5,\002, type \002,i1,\002, test(\002,i1,\002)" "=\002,g12.5)"; /* System generated locals */ address a__1[2]; integer i__1, i__2, i__3, i__4, i__5[2]; char ch__1[2]; /* Builtin functions */ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen); /* Local variables */ extern /* Subroutine */ int debchvxx_(doublereal *, char *); integer i__, k, n; doublereal *errbnds_c__, *errbnds_n__; integer k1, nb, in, kl, ku, nt, n_err_bnds__, lda; char fact[1]; integer ioff, mode; doublereal amax; char path[3]; integer imat, info; doublereal *berr; char dist[1]; doublereal rpvgrw_svxx__; char uplo[1], type__[1]; integer nrun, ifact; extern /* Subroutine */ int dget04_(integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *); integer nfail, iseed[4], nfact; extern doublereal dget06_(doublereal *, doublereal *); extern logical lsame_(char *, char *); char equed[1]; integer nbmin; doublereal rcond, roldc, scond; integer nimat; extern /* Subroutine */ int dpot01_(char *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *), dpot02_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *), dpot05_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *); doublereal anorm; logical equil; integer iuplo, izero, nerrs; extern /* Subroutine */ int dposv_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, integer *); logical zerot; char xtype[1]; extern /* Subroutine */ int dlatb4_(char *, integer *, integer *, integer *, char *, integer *, integer *, doublereal *, integer *, doublereal *, char *), aladhd_(integer *, char *), alaerh_(char *, char *, integer *, integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *); logical prefac; doublereal rcondc; logical nofact; integer iequed; extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *), dlarhs_(char *, char *, char *, char *, integer *, integer *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, integer *, integer *), dlaset_(char *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *), alasvm_(char *, integer *, integer *, integer *, integer *); doublereal cndnum; extern /* Subroutine */ int dlatms_(integer *, integer *, char *, integer *, char *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, char *, doublereal *, integer *, doublereal *, integer *); doublereal ainvnm; extern doublereal dlansy_(char *, char *, integer *, doublereal *, integer *, doublereal *); extern /* Subroutine */ int dlaqsy_(char *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, char *), dpoequ_(integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *), dpotrf_( char *, integer *, doublereal *, integer *, integer *), dpotri_(char *, integer *, doublereal *, integer *, integer *), xlaenv_(integer *, integer *), derrvx_(char *, integer *); doublereal result[6]; extern /* Subroutine */ int dposvx_(char *, char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, char *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, integer *), dposvxx_(char *, char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, char *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *); /* Fortran I/O blocks */ static cilist io___48 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___51 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___52 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___58 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___59 = { 0, 0, 0, fmt_9998, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DDRVPO tests the driver routines DPOSV, -SVX, and -SVXX. */ /* Arguments */ /* ========= */ /* DOTYPE (input) LOGICAL array, dimension (NTYPES) */ /* The matrix types to be used for testing. Matrices of type j */ /* (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */ /* .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */ /* NN (input) INTEGER */ /* The number of values of N contained in the vector NVAL. */ /* NVAL (input) INTEGER array, dimension (NN) */ /* The values of the matrix dimension N. */ /* NRHS (input) INTEGER */ /* The number of right hand side vectors to be generated for */ /* each linear system. */ /* THRESH (input) DOUBLE PRECISION */ /* The threshold value for the test ratios. A result is */ /* included in the output file if RESULT >= THRESH. To have */ /* every test ratio printed, use THRESH = 0. */ /* TSTERR (input) LOGICAL */ /* Flag that indicates whether error exits are to be tested. */ /* NMAX (input) INTEGER */ /* The maximum value permitted for N, used in dimensioning the */ /* work arrays. */ /* A (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) */ /* AFAC (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) */ /* ASAV (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) */ /* B (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS) */ /* BSAV (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS) */ /* X (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS) */ /* XACT (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS) */ /* S (workspace) DOUBLE PRECISION array, dimension (NMAX) */ /* WORK (workspace) DOUBLE PRECISION array, dimension */ /* (NMAX*max(3,NRHS)) */ /* RWORK (workspace) DOUBLE PRECISION array, dimension (NMAX+2*NRHS) */ /* IWORK (workspace) INTEGER array, dimension (NMAX) */ /* NOUT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --iwork; --rwork; --work; --s; --xact; --x; --bsav; --b; --asav; --afac; --a; --nval; --dotype; /* Function Body */ /* .. */ /* .. Executable Statements .. */ /* Initialize constants and the random number seed. */ s_copy(path, "Double precision", (ftnlen)1, (ftnlen)16); s_copy(path + 1, "PO", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { derrvx_(path, nout); } infoc_1.infot = 0; /* Set the block size and minimum block size for testing. */ nb = 1; nbmin = 2; xlaenv_(&c__1, &nb); xlaenv_(&c__2, &nbmin); /* Do for each value of N in NVAL */ i__1 = *nn; for (in = 1; in <= i__1; ++in) { n = nval[in]; lda = max(n,1); *(unsigned char *)xtype = 'N'; nimat = 9; if (n <= 0) { nimat = 1; } i__2 = nimat; for (imat = 1; imat <= i__2; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L120; } /* Skip types 3, 4, or 5 if the matrix size is too small. */ zerot = imat >= 3 && imat <= 5; if (zerot && n < imat - 2) { goto L120; } /* Do first for UPLO = 'U', then for UPLO = 'L' */ for (iuplo = 1; iuplo <= 2; ++iuplo) { *(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1]; /* Set up parameters with DLATB4 and generate a test matrix */ /* with DLATMS. */ dlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, &cndnum, dist); s_copy(srnamc_1.srnamt, "DLATMS", (ftnlen)32, (ftnlen)6); dlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, & cndnum, &anorm, &kl, &ku, uplo, &a[1], &lda, &work[1], &info); /* Check error code from DLATMS. */ if (info != 0) { alaerh_(path, "DLATMS", &info, &c__0, uplo, &n, &n, &c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); goto L110; } /* For types 3-5, zero one row and column of the matrix to */ /* test that INFO is returned correctly. */ if (zerot) { if (imat == 3) { izero = 1; } else if (imat == 4) { izero = n; } else { izero = n / 2 + 1; } ioff = (izero - 1) * lda; /* Set row and column IZERO of A to 0. */ if (iuplo == 1) { i__3 = izero - 1; for (i__ = 1; i__ <= i__3; ++i__) { a[ioff + i__] = 0.; /* L20: */ } ioff += izero; i__3 = n; for (i__ = izero; i__ <= i__3; ++i__) { a[ioff] = 0.; ioff += lda; /* L30: */ } } else { ioff = izero; i__3 = izero - 1; for (i__ = 1; i__ <= i__3; ++i__) { a[ioff] = 0.; ioff += lda; /* L40: */ } ioff -= izero; i__3 = n; for (i__ = izero; i__ <= i__3; ++i__) { a[ioff + i__] = 0.; /* L50: */ } } } else { izero = 0; } /* Save a copy of the matrix A in ASAV. */ dlacpy_(uplo, &n, &n, &a[1], &lda, &asav[1], &lda); for (iequed = 1; iequed <= 2; ++iequed) { *(unsigned char *)equed = *(unsigned char *)&equeds[ iequed - 1]; if (iequed == 1) { nfact = 3; } else { nfact = 1; } i__3 = nfact; for (ifact = 1; ifact <= i__3; ++ifact) { for (i__ = 1; i__ <= 6; ++i__) { result[i__ - 1] = 0.; } *(unsigned char *)fact = *(unsigned char *)&facts[ ifact - 1]; prefac = lsame_(fact, "F"); nofact = lsame_(fact, "N"); equil = lsame_(fact, "E"); if (zerot) { if (prefac) { goto L90; } rcondc = 0.; } else if (! lsame_(fact, "N")) { /* Compute the condition number for comparison with */ /* the value returned by DPOSVX (FACT = 'N' reuses */ /* the condition number from the previous iteration */ /* with FACT = 'F'). */ dlacpy_(uplo, &n, &n, &asav[1], &lda, &afac[1], & lda); if (equil || iequed > 1) { /* Compute row and column scale factors to */ /* equilibrate the matrix A. */ dpoequ_(&n, &afac[1], &lda, &s[1], &scond, & amax, &info); if (info == 0 && n > 0) { if (iequed > 1) { scond = 0.; } /* Equilibrate the matrix. */ dlaqsy_(uplo, &n, &afac[1], &lda, &s[1], & scond, &amax, equed); } } /* Save the condition number of the */ /* non-equilibrated system for use in DGET04. */ if (equil) { roldc = rcondc; } /* Compute the 1-norm of A. */ anorm = dlansy_("1", uplo, &n, &afac[1], &lda, & rwork[1]); /* Factor the matrix A. */ dpotrf_(uplo, &n, &afac[1], &lda, &info); /* Form the inverse of A. */ dlacpy_(uplo, &n, &n, &afac[1], &lda, &a[1], &lda); dpotri_(uplo, &n, &a[1], &lda, &info); /* Compute the 1-norm condition number of A. */ ainvnm = dlansy_("1", uplo, &n, &a[1], &lda, & rwork[1]); if (anorm <= 0. || ainvnm <= 0.) { rcondc = 1.; } else { rcondc = 1. / anorm / ainvnm; } } /* Restore the matrix A. */ dlacpy_(uplo, &n, &n, &asav[1], &lda, &a[1], &lda); /* Form an exact solution and set the right hand side. */ s_copy(srnamc_1.srnamt, "DLARHS", (ftnlen)32, (ftnlen) 6); dlarhs_(path, xtype, uplo, " ", &n, &n, &kl, &ku, nrhs, &a[1], &lda, &xact[1], &lda, &b[1], & lda, iseed, &info); *(unsigned char *)xtype = 'C'; dlacpy_("Full", &n, nrhs, &b[1], &lda, &bsav[1], &lda); if (nofact) { /* --- Test DPOSV --- */ /* Compute the L*L' or U'*U factorization of the */ /* matrix and solve the system. */ dlacpy_(uplo, &n, &n, &a[1], &lda, &afac[1], &lda); dlacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], & lda); s_copy(srnamc_1.srnamt, "DPOSV ", (ftnlen)32, ( ftnlen)6); dposv_(uplo, &n, nrhs, &afac[1], &lda, &x[1], & lda, &info); /* Check error code from DPOSV . */ if (info != izero) { alaerh_(path, "DPOSV ", &info, &izero, uplo, & n, &n, &c_n1, &c_n1, nrhs, &imat, & nfail, &nerrs, nout); goto L70; } else if (info != 0) { goto L70; } /* Reconstruct matrix from factors and compute */ /* residual. */ dpot01_(uplo, &n, &a[1], &lda, &afac[1], &lda, & rwork[1], result); /* Compute residual of the computed solution. */ dlacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], & lda); dpot02_(uplo, &n, nrhs, &a[1], &lda, &x[1], &lda, &work[1], &lda, &rwork[1], &result[1]); /* Check solution from generated exact solution. */ dget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[2]); nt = 3; /* Print information about the tests that did not */ /* pass the threshold. */ i__4 = nt; for (k = 1; k <= i__4; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } io___48.ciunit = *nout; s_wsfe(&io___48); do_fio(&c__1, "DPOSV ", (ftnlen)6); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], ( ftnlen)sizeof(doublereal)); e_wsfe(); ++nfail; } /* L60: */ } nrun += nt; L70: ; } /* --- Test DPOSVX --- */ if (! prefac) { dlaset_(uplo, &n, &n, &c_b50, &c_b50, &afac[1], & lda); } dlaset_("Full", &n, nrhs, &c_b50, &c_b50, &x[1], &lda); if (iequed > 1 && n > 0) { /* Equilibrate the matrix if FACT='F' and */ /* EQUED='Y'. */ dlaqsy_(uplo, &n, &a[1], &lda, &s[1], &scond, & amax, equed); } /* Solve the system and compute the condition number */ /* and error bounds using DPOSVX. */ s_copy(srnamc_1.srnamt, "DPOSVX", (ftnlen)32, (ftnlen) 6); dposvx_(fact, uplo, &n, nrhs, &a[1], &lda, &afac[1], & lda, equed, &s[1], &b[1], &lda, &x[1], &lda, & rcond, &rwork[1], &rwork[*nrhs + 1], &work[1], &iwork[1], &info); /* Check the error code from DPOSVX. */ if (info == n + 1) { goto L90; } if (info != izero) { /* Writing concatenation */ i__5[0] = 1, a__1[0] = fact; i__5[1] = 1, a__1[1] = uplo; s_cat(ch__1, a__1, i__5, &c__2, (ftnlen)2); alaerh_(path, "DPOSVX", &info, &izero, ch__1, &n, &n, &c_n1, &c_n1, nrhs, &imat, &nfail, & nerrs, nout); goto L90; } if (info == 0) { if (! prefac) { /* Reconstruct matrix from factors and compute */ /* residual. */ dpot01_(uplo, &n, &a[1], &lda, &afac[1], &lda, &rwork[(*nrhs << 1) + 1], result); k1 = 1; } else { k1 = 2; } /* Compute residual of the computed solution. */ dlacpy_("Full", &n, nrhs, &bsav[1], &lda, &work[1] , &lda); dpot02_(uplo, &n, nrhs, &asav[1], &lda, &x[1], & lda, &work[1], &lda, &rwork[(*nrhs << 1) + 1], &result[1]); /* Check solution from generated exact solution. */ if (nofact || prefac && lsame_(equed, "N")) { dget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, &result[2]); } else { dget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &roldc, &result[2]); } /* Check the error bounds from iterative */ /* refinement. */ dpot05_(uplo, &n, nrhs, &asav[1], &lda, &b[1], & lda, &x[1], &lda, &xact[1], &lda, &rwork[ 1], &rwork[*nrhs + 1], &result[3]); } else { k1 = 6; } /* Compare RCOND from DPOSVX with the computed value */ /* in RCONDC. */ result[5] = dget06_(&rcond, &rcondc); /* Print information about the tests that did not pass */ /* the threshold. */ for (k = k1; k <= 6; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } if (prefac) { io___51.ciunit = *nout; s_wsfe(&io___51); do_fio(&c__1, "DPOSVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, equed, (ftnlen)1); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], ( ftnlen)sizeof(doublereal)); e_wsfe(); } else { io___52.ciunit = *nout; s_wsfe(&io___52); do_fio(&c__1, "DPOSVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], ( ftnlen)sizeof(doublereal)); e_wsfe(); } ++nfail; } /* L80: */ } nrun = nrun + 7 - k1; /* --- Test DPOSVXX --- */ /* Restore the matrices A and B. */ dlacpy_("Full", &n, &n, &asav[1], &lda, &a[1], &lda); dlacpy_("Full", &n, nrhs, &bsav[1], &lda, &b[1], &lda); if (! prefac) { dlaset_(uplo, &n, &n, &c_b50, &c_b50, &afac[1], & lda); } dlaset_("Full", &n, nrhs, &c_b50, &c_b50, &x[1], &lda); if (iequed > 1 && n > 0) { /* Equilibrate the matrix if FACT='F' and */ /* EQUED='Y'. */ dlaqsy_(uplo, &n, &a[1], &lda, &s[1], &scond, & amax, equed); } /* Solve the system and compute the condition number */ /* and error bounds using DPOSVXX. */ s_copy(srnamc_1.srnamt, "DPOSVXX", (ftnlen)32, ( ftnlen)7); dalloc3(); dposvxx_(fact, uplo, &n, nrhs, &a[1], &lda, &afac[1], &lda, equed, &s[1], &b[1], &lda, &x[1], &lda, &rcond, &rpvgrw_svxx__, berr, &n_err_bnds__, errbnds_n__, errbnds_c__, &c__0, &c_b50, & work[1], &iwork[1], &info); free3(); /* Check the error code from DPOSVXX. */ if (info == n + 1) { goto L90; } if (info != izero) { /* Writing concatenation */ i__5[0] = 1, a__1[0] = fact; i__5[1] = 1, a__1[1] = uplo; s_cat(ch__1, a__1, i__5, &c__2, (ftnlen)2); alaerh_(path, "DPOSVXX", &info, &izero, ch__1, &n, &n, &c_n1, &c_n1, nrhs, &imat, &nfail, & nerrs, nout); goto L90; } if (info == 0) { if (! prefac) { /* Reconstruct matrix from factors and compute */ /* residual. */ dpot01_(uplo, &n, &a[1], &lda, &afac[1], &lda, &rwork[(*nrhs << 1) + 1], result); k1 = 1; } else { k1 = 2; } /* Compute residual of the computed solution. */ dlacpy_("Full", &n, nrhs, &bsav[1], &lda, &work[1] , &lda); dpot02_(uplo, &n, nrhs, &asav[1], &lda, &x[1], & lda, &work[1], &lda, &rwork[(*nrhs << 1) + 1], &result[1]); /* Check solution from generated exact solution. */ if (nofact || prefac && lsame_(equed, "N")) { dget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, &result[2]); } else { dget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &roldc, &result[2]); } /* Check the error bounds from iterative */ /* refinement. */ dpot05_(uplo, &n, nrhs, &asav[1], &lda, &b[1], & lda, &x[1], &lda, &xact[1], &lda, &rwork[ 1], &rwork[*nrhs + 1], &result[3]); } else { k1 = 6; } /* Compare RCOND from DPOSVXX with the computed value */ /* in RCONDC. */ result[5] = dget06_(&rcond, &rcondc); /* Print information about the tests that did not pass */ /* the threshold. */ for (k = k1; k <= 6; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } if (prefac) { io___58.ciunit = *nout; s_wsfe(&io___58); do_fio(&c__1, "DPOSVXX", (ftnlen)7); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, equed, (ftnlen)1); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], ( ftnlen)sizeof(doublereal)); e_wsfe(); } else { io___59.ciunit = *nout; s_wsfe(&io___59); do_fio(&c__1, "DPOSVXX", (ftnlen)7); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], ( ftnlen)sizeof(doublereal)); e_wsfe(); } ++nfail; } /* L85: */ } nrun = nrun + 7 - k1; L90: ; } /* L100: */ } L110: ; } L120: ; } /* L130: */ } /* Print a summary of the results. */ alasvm_(path, nout, &nfail, &nrun, &nerrs); /* Test Error Bounds from DPOSVXX */ debchvxx_(thresh, path); return 0; /* End of DDRVPO */ } /* ddrvpo_ */