/* dchktr.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Common Block Declarations */ struct { integer infot, iounit; logical ok, lerr; } infoc_; #define infoc_1 infoc_ struct { char srnamt[32]; } srnamc_; #define srnamc_1 srnamc_ /* Table of constant values */ static integer c__2 = 2; static integer c__1 = 1; static integer c__0 = 0; static integer c_n1 = -1; static integer c__3 = 3; static integer c__7 = 7; static integer c__4 = 4; static doublereal c_b101 = 1.; static integer c__8 = 8; static integer c__9 = 9; /* Subroutine */ int dchktr_(logical *dotype, integer *nn, integer *nval, integer *nnb, integer *nbval, integer *nns, integer *nsval, doublereal *thresh, logical *tsterr, integer *nmax, doublereal *a, doublereal *ainv, doublereal *b, doublereal *x, doublereal *xact, doublereal *work, doublereal *rwork, integer *iwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; static char uplos[1*2] = "U" "L"; static char transs[1*3] = "N" "T" "C"; /* Format strings */ static char fmt_9999[] = "(\002 UPLO='\002,a1,\002', DIAG='\002,a1,\002'" ", N=\002,i5,\002, NB=\002,i4,\002, type \002,i2,\002, test(\002," "i2,\002)= \002,g12.5)"; static char fmt_9998[] = "(\002 UPLO='\002,a1,\002', TRANS='\002,a1,\002" "', DIAG='\002,a1,\002', N=\002,i5,\002, NB=\002,i4,\002, type" " \002,i2,\002, test(\002,i2,\002)= \002,g12" ".5)"; static char fmt_9997[] = "(\002 NORM='\002,a1,\002', UPLO ='\002,a1,\002" "', N=\002,i5,\002,\002,11x,\002 type \002,i2,\002, test(\002,i2" ",\002)=\002,g12.5)"; static char fmt_9996[] = "(1x,a,\002( '\002,a1,\002', '\002,a1,\002', " "'\002,a1,\002', '\002,a1,\002',\002,i5,\002, ... ), type \002,i2," "\002, test(\002,i2,\002)=\002,g12.5)"; /* System generated locals */ address a__1[2], a__2[3], a__3[4]; integer i__1, i__2, i__3[2], i__4, i__5[3], i__6[4]; char ch__1[2], ch__2[3], ch__3[4]; /* Builtin functions */ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen), s_cat(char *, char **, integer *, integer *, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Local variables */ integer i__, k, n, nb, in, lda, inb; char diag[1]; integer imat, info; char path[3]; integer irhs, nrhs; char norm[1], uplo[1]; integer nrun; extern /* Subroutine */ int alahd_(integer *, char *); integer idiag; doublereal scale; extern /* Subroutine */ int dget04_(integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *); integer nfail, iseed[4]; extern logical lsame_(char *, char *); doublereal rcond, anorm; integer itran; extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, doublereal *, integer *), dtrt01_(char *, char *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *), dtrt02_(char *, char *, char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *), dtrt03_(char *, char *, char *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *), dtrt05_(char *, char *, char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *), dtrt06_( doublereal *, doublereal *, char *, char *, integer *, doublereal *, integer *, doublereal *, doublereal *); char trans[1]; integer iuplo, nerrs; doublereal dummy; char xtype[1]; extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *); doublereal rcondc; extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *), dlarhs_(char *, char *, char *, char *, integer *, integer *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, integer *, integer *); doublereal rcondi; extern /* Subroutine */ int alasum_(char *, integer *, integer *, integer *, integer *); doublereal rcondo; extern doublereal dlantr_(char *, char *, char *, integer *, integer *, doublereal *, integer *, doublereal *); doublereal ainvnm; extern /* Subroutine */ int dlatrs_(char *, char *, char *, char *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *), dlattr_( integer *, char *, char *, char *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *), dtrcon_(char *, char *, char *, integer * , doublereal *, integer *, doublereal *, doublereal *, integer *, integer *), xlaenv_(integer *, integer *), derrtr_(char *, integer *), dtrrfs_(char *, char *, char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *, integer *), dtrtri_(char *, char *, integer *, doublereal *, integer *, integer *); doublereal result[9]; extern /* Subroutine */ int dtrtrs_(char *, char *, char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, integer *); /* Fortran I/O blocks */ static cilist io___27 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___36 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___38 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___40 = { 0, 0, 0, fmt_9996, 0 }; static cilist io___41 = { 0, 0, 0, fmt_9996, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DCHKTR tests DTRTRI, -TRS, -RFS, and -CON, and DLATRS */ /* Arguments */ /* ========= */ /* DOTYPE (input) LOGICAL array, dimension (NTYPES) */ /* The matrix types to be used for testing. Matrices of type j */ /* (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */ /* .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */ /* NN (input) INTEGER */ /* The number of values of N contained in the vector NVAL. */ /* NVAL (input) INTEGER array, dimension (NN) */ /* The values of the matrix column dimension N. */ /* NNB (input) INTEGER */ /* The number of values of NB contained in the vector NBVAL. */ /* NBVAL (input) INTEGER array, dimension (NNB) */ /* The values of the blocksize NB. */ /* NNS (input) INTEGER */ /* The number of values of NRHS contained in the vector NSVAL. */ /* NSVAL (input) INTEGER array, dimension (NNS) */ /* The values of the number of right hand sides NRHS. */ /* THRESH (input) DOUBLE PRECISION */ /* The threshold value for the test ratios. A result is */ /* included in the output file if RESULT >= THRESH. To have */ /* every test ratio printed, use THRESH = 0. */ /* TSTERR (input) LOGICAL */ /* Flag that indicates whether error exits are to be tested. */ /* NMAX (input) INTEGER */ /* The leading dimension of the work arrays. */ /* NMAX >= the maximum value of N in NVAL. */ /* A (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) */ /* AINV (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) */ /* B (workspace) DOUBLE PRECISION array, dimension (NMAX*NSMAX) */ /* where NSMAX is the largest entry in NSVAL. */ /* X (workspace) DOUBLE PRECISION array, dimension (NMAX*NSMAX) */ /* XACT (workspace) DOUBLE PRECISION array, dimension (NMAX*NSMAX) */ /* WORK (workspace) DOUBLE PRECISION array, dimension */ /* (NMAX*max(3,NSMAX)) */ /* RWORK (workspace) DOUBLE PRECISION array, dimension */ /* (max(NMAX,2*NSMAX)) */ /* IWORK (workspace) INTEGER array, dimension (NMAX) */ /* NOUT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --iwork; --rwork; --work; --xact; --x; --b; --ainv; --a; --nsval; --nbval; --nval; --dotype; /* Function Body */ /* .. */ /* .. Executable Statements .. */ /* Initialize constants and the random number seed. */ s_copy(path, "Double precision", (ftnlen)1, (ftnlen)16); s_copy(path + 1, "TR", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { derrtr_(path, nout); } infoc_1.infot = 0; xlaenv_(&c__2, &c__2); i__1 = *nn; for (in = 1; in <= i__1; ++in) { /* Do for each value of N in NVAL */ n = nval[in]; lda = max(1,n); *(unsigned char *)xtype = 'N'; for (imat = 1; imat <= 10; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L80; } for (iuplo = 1; iuplo <= 2; ++iuplo) { /* Do first for UPLO = 'U', then for UPLO = 'L' */ *(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1]; /* Call DLATTR to generate a triangular test matrix. */ s_copy(srnamc_1.srnamt, "DLATTR", (ftnlen)32, (ftnlen)6); dlattr_(&imat, uplo, "No transpose", diag, iseed, &n, &a[1], & lda, &x[1], &work[1], &info); /* Set IDIAG = 1 for non-unit matrices, 2 for unit. */ if (lsame_(diag, "N")) { idiag = 1; } else { idiag = 2; } i__2 = *nnb; for (inb = 1; inb <= i__2; ++inb) { /* Do for each blocksize in NBVAL */ nb = nbval[inb]; xlaenv_(&c__1, &nb); /* + TEST 1 */ /* Form the inverse of A. */ dlacpy_(uplo, &n, &n, &a[1], &lda, &ainv[1], &lda); s_copy(srnamc_1.srnamt, "DTRTRI", (ftnlen)32, (ftnlen)6); dtrtri_(uplo, diag, &n, &ainv[1], &lda, &info); /* Check error code from DTRTRI. */ if (info != 0) { /* Writing concatenation */ i__3[0] = 1, a__1[0] = uplo; i__3[1] = 1, a__1[1] = diag; s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2); alaerh_(path, "DTRTRI", &info, &c__0, ch__1, &n, &n, & c_n1, &c_n1, &nb, &imat, &nfail, &nerrs, nout); } /* Compute the infinity-norm condition number of A. */ anorm = dlantr_("I", uplo, diag, &n, &n, &a[1], &lda, & rwork[1]); ainvnm = dlantr_("I", uplo, diag, &n, &n, &ainv[1], &lda, &rwork[1]); if (anorm <= 0. || ainvnm <= 0.) { rcondi = 1.; } else { rcondi = 1. / anorm / ainvnm; } /* Compute the residual for the triangular matrix times */ /* its inverse. Also compute the 1-norm condition number */ /* of A. */ dtrt01_(uplo, diag, &n, &a[1], &lda, &ainv[1], &lda, & rcondo, &rwork[1], result); /* Print the test ratio if it is .GE. THRESH. */ if (result[0] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___27.ciunit = *nout; s_wsfe(&io___27); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, diag, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&nb, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__1, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[0], (ftnlen)sizeof( doublereal)); e_wsfe(); ++nfail; } ++nrun; /* Skip remaining tests if not the first block size. */ if (inb != 1) { goto L60; } i__4 = *nns; for (irhs = 1; irhs <= i__4; ++irhs) { nrhs = nsval[irhs]; *(unsigned char *)xtype = 'N'; for (itran = 1; itran <= 3; ++itran) { /* Do for op(A) = A, A**T, or A**H. */ *(unsigned char *)trans = *(unsigned char *)& transs[itran - 1]; if (itran == 1) { *(unsigned char *)norm = 'O'; rcondc = rcondo; } else { *(unsigned char *)norm = 'I'; rcondc = rcondi; } /* + TEST 2 */ /* Solve and compute residual for op(A)*x = b. */ s_copy(srnamc_1.srnamt, "DLARHS", (ftnlen)32, ( ftnlen)6); dlarhs_(path, xtype, uplo, trans, &n, &n, &c__0, & idiag, &nrhs, &a[1], &lda, &xact[1], &lda, &b[1], &lda, iseed, &info); *(unsigned char *)xtype = 'C'; dlacpy_("Full", &n, &nrhs, &b[1], &lda, &x[1], & lda); s_copy(srnamc_1.srnamt, "DTRTRS", (ftnlen)32, ( ftnlen)6); dtrtrs_(uplo, trans, diag, &n, &nrhs, &a[1], &lda, &x[1], &lda, &info); /* Check error code from DTRTRS. */ if (info != 0) { /* Writing concatenation */ i__5[0] = 1, a__2[0] = uplo; i__5[1] = 1, a__2[1] = trans; i__5[2] = 1, a__2[2] = diag; s_cat(ch__2, a__2, i__5, &c__3, (ftnlen)3); alaerh_(path, "DTRTRS", &info, &c__0, ch__2, & n, &n, &c_n1, &c_n1, &nrhs, &imat, & nfail, &nerrs, nout); } /* This line is needed on a Sun SPARCstation. */ if (n > 0) { dummy = a[1]; } dtrt02_(uplo, trans, diag, &n, &nrhs, &a[1], &lda, &x[1], &lda, &b[1], &lda, &work[1], & result[1]); /* + TEST 3 */ /* Check solution from generated exact solution. */ dget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[2]); /* + TESTS 4, 5, and 6 */ /* Use iterative refinement to improve the solution */ /* and compute error bounds. */ s_copy(srnamc_1.srnamt, "DTRRFS", (ftnlen)32, ( ftnlen)6); dtrrfs_(uplo, trans, diag, &n, &nrhs, &a[1], &lda, &b[1], &lda, &x[1], &lda, &rwork[1], & rwork[nrhs + 1], &work[1], &iwork[1], & info); /* Check error code from DTRRFS. */ if (info != 0) { /* Writing concatenation */ i__5[0] = 1, a__2[0] = uplo; i__5[1] = 1, a__2[1] = trans; i__5[2] = 1, a__2[2] = diag; s_cat(ch__2, a__2, i__5, &c__3, (ftnlen)3); alaerh_(path, "DTRRFS", &info, &c__0, ch__2, & n, &n, &c_n1, &c_n1, &nrhs, &imat, & nfail, &nerrs, nout); } dget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[3]); dtrt05_(uplo, trans, diag, &n, &nrhs, &a[1], &lda, &b[1], &lda, &x[1], &lda, &xact[1], &lda, &rwork[1], &rwork[nrhs + 1], &result[4]); /* Print information about the tests that did not */ /* pass the threshold. */ for (k = 2; k <= 6; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___36.ciunit = *nout; s_wsfe(&io___36); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, diag, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&nrhs, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], ( ftnlen)sizeof(doublereal)); e_wsfe(); ++nfail; } /* L20: */ } nrun += 5; /* L30: */ } /* L40: */ } /* + TEST 7 */ /* Get an estimate of RCOND = 1/CNDNUM. */ for (itran = 1; itran <= 2; ++itran) { if (itran == 1) { *(unsigned char *)norm = 'O'; rcondc = rcondo; } else { *(unsigned char *)norm = 'I'; rcondc = rcondi; } s_copy(srnamc_1.srnamt, "DTRCON", (ftnlen)32, (ftnlen) 6); dtrcon_(norm, uplo, diag, &n, &a[1], &lda, &rcond, & work[1], &iwork[1], &info); /* Check error code from DTRCON. */ if (info != 0) { /* Writing concatenation */ i__5[0] = 1, a__2[0] = norm; i__5[1] = 1, a__2[1] = uplo; i__5[2] = 1, a__2[2] = diag; s_cat(ch__2, a__2, i__5, &c__3, (ftnlen)3); alaerh_(path, "DTRCON", &info, &c__0, ch__2, &n, & n, &c_n1, &c_n1, &c_n1, &imat, &nfail, & nerrs, nout); } dtrt06_(&rcond, &rcondc, uplo, diag, &n, &a[1], &lda, &rwork[1], &result[6]); /* Print the test ratio if it is .GE. THRESH. */ if (result[6] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___38.ciunit = *nout; s_wsfe(&io___38); do_fio(&c__1, norm, (ftnlen)1); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&c__7, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[6], (ftnlen)sizeof( doublereal)); e_wsfe(); ++nfail; } ++nrun; /* L50: */ } L60: ; } /* L70: */ } L80: ; } /* Use pathological test matrices to test DLATRS. */ for (imat = 11; imat <= 18; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L110; } for (iuplo = 1; iuplo <= 2; ++iuplo) { /* Do first for UPLO = 'U', then for UPLO = 'L' */ *(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1]; for (itran = 1; itran <= 3; ++itran) { /* Do for op(A) = A, A**T, and A**H. */ *(unsigned char *)trans = *(unsigned char *)&transs[itran - 1]; /* Call DLATTR to generate a triangular test matrix. */ s_copy(srnamc_1.srnamt, "DLATTR", (ftnlen)32, (ftnlen)6); dlattr_(&imat, uplo, trans, diag, iseed, &n, &a[1], &lda, &x[1], &work[1], &info); /* + TEST 8 */ /* Solve the system op(A)*x = b. */ s_copy(srnamc_1.srnamt, "DLATRS", (ftnlen)32, (ftnlen)6); dcopy_(&n, &x[1], &c__1, &b[1], &c__1); dlatrs_(uplo, trans, diag, "N", &n, &a[1], &lda, &b[1], & scale, &rwork[1], &info); /* Check error code from DLATRS. */ if (info != 0) { /* Writing concatenation */ i__6[0] = 1, a__3[0] = uplo; i__6[1] = 1, a__3[1] = trans; i__6[2] = 1, a__3[2] = diag; i__6[3] = 1, a__3[3] = "N"; s_cat(ch__3, a__3, i__6, &c__4, (ftnlen)4); alaerh_(path, "DLATRS", &info, &c__0, ch__3, &n, &n, & c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); } dtrt03_(uplo, trans, diag, &n, &c__1, &a[1], &lda, &scale, &rwork[1], &c_b101, &b[1], &lda, &x[1], &lda, & work[1], &result[7]); /* + TEST 9 */ /* Solve op(A)*X = b again with NORMIN = 'Y'. */ dcopy_(&n, &x[1], &c__1, &b[n + 1], &c__1); dlatrs_(uplo, trans, diag, "Y", &n, &a[1], &lda, &b[n + 1] , &scale, &rwork[1], &info); /* Check error code from DLATRS. */ if (info != 0) { /* Writing concatenation */ i__6[0] = 1, a__3[0] = uplo; i__6[1] = 1, a__3[1] = trans; i__6[2] = 1, a__3[2] = diag; i__6[3] = 1, a__3[3] = "Y"; s_cat(ch__3, a__3, i__6, &c__4, (ftnlen)4); alaerh_(path, "DLATRS", &info, &c__0, ch__3, &n, &n, & c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); } dtrt03_(uplo, trans, diag, &n, &c__1, &a[1], &lda, &scale, &rwork[1], &c_b101, &b[n + 1], &lda, &x[1], &lda, &work[1], &result[8]); /* Print information about the tests that did not pass */ /* the threshold. */ if (result[7] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___40.ciunit = *nout; s_wsfe(&io___40); do_fio(&c__1, "DLATRS", (ftnlen)6); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, diag, (ftnlen)1); do_fio(&c__1, "N", (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__8, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[7], (ftnlen)sizeof( doublereal)); e_wsfe(); ++nfail; } if (result[8] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___41.ciunit = *nout; s_wsfe(&io___41); do_fio(&c__1, "DLATRS", (ftnlen)6); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, diag, (ftnlen)1); do_fio(&c__1, "Y", (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__9, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[8], (ftnlen)sizeof( doublereal)); e_wsfe(); ++nfail; } nrun += 2; /* L90: */ } /* L100: */ } L110: ; } /* L120: */ } /* Print a summary of the results. */ alasum_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of DCHKTR */ } /* dchktr_ */