/* ctpt01.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; /* Subroutine */ int ctpt01_(char *uplo, char *diag, integer *n, complex *ap, complex *ainvp, real *rcond, real *rwork, real *resid) { /* System generated locals */ integer i__1, i__2, i__3; complex q__1; /* Local variables */ integer j, jc; real eps; extern logical lsame_(char *, char *); real anorm; logical unitd; extern /* Subroutine */ int ctpmv_(char *, char *, char *, integer *, complex *, complex *, integer *); extern doublereal slamch_(char *), clantp_(char *, char *, char *, integer *, complex *, real *); real ainvnm; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CTPT01 computes the residual for a triangular matrix A times its */ /* inverse when A is stored in packed format: */ /* RESID = norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS ), */ /* where EPS is the machine epsilon. */ /* Arguments */ /* ========== */ /* UPLO (input) CHARACTER*1 */ /* Specifies whether the matrix A is upper or lower triangular. */ /* = 'U': Upper triangular */ /* = 'L': Lower triangular */ /* DIAG (input) CHARACTER*1 */ /* Specifies whether or not the matrix A is unit triangular. */ /* = 'N': Non-unit triangular */ /* = 'U': Unit triangular */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* AP (input) COMPLEX array, dimension (N*(N+1)/2) */ /* The original upper or lower triangular matrix A, packed */ /* columnwise in a linear array. The j-th column of A is stored */ /* in the array AP as follows: */ /* if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j; */ /* if UPLO = 'L', */ /* AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n. */ /* AINVP (input) COMPLEX array, dimension (N*(N+1)/2) */ /* On entry, the (triangular) inverse of the matrix A, packed */ /* columnwise in a linear array as in AP. */ /* On exit, the contents of AINVP are destroyed. */ /* RCOND (output) REAL */ /* The reciprocal condition number of A, computed as */ /* 1/(norm(A) * norm(AINV)). */ /* RWORK (workspace) REAL array, dimension (N) */ /* RESID (output) REAL */ /* norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS ) */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Quick exit if N = 0. */ /* Parameter adjustments */ --rwork; --ainvp; --ap; /* Function Body */ if (*n <= 0) { *rcond = 1.f; *resid = 0.f; return 0; } /* Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0. */ eps = slamch_("Epsilon"); anorm = clantp_("1", uplo, diag, n, &ap[1], &rwork[1]); ainvnm = clantp_("1", uplo, diag, n, &ainvp[1], &rwork[1]); if (anorm <= 0.f || ainvnm <= 0.f) { *rcond = 0.f; *resid = 1.f / eps; return 0; } *rcond = 1.f / anorm / ainvnm; /* Compute A * AINV, overwriting AINV. */ unitd = lsame_(diag, "U"); if (lsame_(uplo, "U")) { jc = 1; i__1 = *n; for (j = 1; j <= i__1; ++j) { if (unitd) { i__2 = jc + j - 1; ainvp[i__2].r = 1.f, ainvp[i__2].i = 0.f; } /* Form the j-th column of A*AINV. */ ctpmv_("Upper", "No transpose", diag, &j, &ap[1], &ainvp[jc], & c__1); /* Subtract 1 from the diagonal to form A*AINV - I. */ i__2 = jc + j - 1; i__3 = jc + j - 1; q__1.r = ainvp[i__3].r - 1.f, q__1.i = ainvp[i__3].i; ainvp[i__2].r = q__1.r, ainvp[i__2].i = q__1.i; jc += j; /* L10: */ } } else { jc = 1; i__1 = *n; for (j = 1; j <= i__1; ++j) { if (unitd) { i__2 = jc; ainvp[i__2].r = 1.f, ainvp[i__2].i = 0.f; } /* Form the j-th column of A*AINV. */ i__2 = *n - j + 1; ctpmv_("Lower", "No transpose", diag, &i__2, &ap[jc], &ainvp[jc], &c__1); /* Subtract 1 from the diagonal to form A*AINV - I. */ i__2 = jc; i__3 = jc; q__1.r = ainvp[i__3].r - 1.f, q__1.i = ainvp[i__3].i; ainvp[i__2].r = q__1.r, ainvp[i__2].i = q__1.i; jc = jc + *n - j + 1; /* L20: */ } } /* Compute norm(A*AINV - I) / (N * norm(A) * norm(AINV) * EPS) */ *resid = clantp_("1", uplo, "Non-unit", n, &ainvp[1], &rwork[1]); *resid = *resid * *rcond / (real) (*n) / eps; return 0; /* End of CTPT01 */ } /* ctpt01_ */