/* cspt02.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static complex c_b1 = {1.f,0.f}; static integer c__1 = 1; /* Subroutine */ int cspt02_(char *uplo, integer *n, integer *nrhs, complex * a, complex *x, integer *ldx, complex *b, integer *ldb, real *rwork, real *resid) { /* System generated locals */ integer b_dim1, b_offset, x_dim1, x_offset, i__1; real r__1, r__2; complex q__1; /* Local variables */ integer j; real eps, anorm, bnorm; extern /* Subroutine */ int cspmv_(char *, integer *, complex *, complex * , complex *, integer *, complex *, complex *, integer *); real xnorm; extern doublereal slamch_(char *), clansp_(char *, char *, integer *, complex *, real *), scasum_(integer *, complex *, integer *); /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CSPT02 computes the residual in the solution of a complex symmetric */ /* system of linear equations A*x = b when packed storage is used for */ /* the coefficient matrix. The ratio computed is */ /* RESID = norm( B - A*X ) / ( norm(A) * norm(X) * EPS). */ /* where EPS is the machine precision. */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER*1 */ /* Specifies whether the upper or lower triangular part of the */ /* complex symmetric matrix A is stored: */ /* = 'U': Upper triangular */ /* = 'L': Lower triangular */ /* N (input) INTEGER */ /* The number of rows and columns of the matrix A. N >= 0. */ /* NRHS (input) INTEGER */ /* The number of columns of B, the matrix of right hand sides. */ /* NRHS >= 0. */ /* A (input) COMPLEX array, dimension (N*(N+1)/2) */ /* The original complex symmetric matrix A, stored as a packed */ /* triangular matrix. */ /* X (input) COMPLEX array, dimension (LDX,NRHS) */ /* The computed solution vectors for the system of linear */ /* equations. */ /* LDX (input) INTEGER */ /* The leading dimension of the array X. LDX >= max(1,N). */ /* B (input/output) COMPLEX array, dimension (LDB,NRHS) */ /* On entry, the right hand side vectors for the system of */ /* linear equations. */ /* On exit, B is overwritten with the difference B - A*X. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,N). */ /* RWORK (workspace) REAL array, dimension (N) */ /* RESID (output) REAL */ /* The maximum over the number of right hand sides of */ /* norm(B - A*X) / ( norm(A) * norm(X) * EPS ). */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Quick exit if N = 0 or NRHS = 0 */ /* Parameter adjustments */ --a; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --rwork; /* Function Body */ if (*n <= 0 || *nrhs <= 0) { *resid = 0.f; return 0; } /* Exit with RESID = 1/EPS if ANORM = 0. */ eps = slamch_("Epsilon"); anorm = clansp_("1", uplo, n, &a[1], &rwork[1]); if (anorm <= 0.f) { *resid = 1.f / eps; return 0; } /* Compute B - A*X for the matrix of right hand sides B. */ i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { q__1.r = -1.f, q__1.i = -0.f; cspmv_(uplo, n, &q__1, &a[1], &x[j * x_dim1 + 1], &c__1, &c_b1, &b[j * b_dim1 + 1], &c__1); /* L10: */ } /* Compute the maximum over the number of right hand sides of */ /* norm( B - A*X ) / ( norm(A) * norm(X) * EPS ) . */ *resid = 0.f; i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { bnorm = scasum_(n, &b[j * b_dim1 + 1], &c__1); xnorm = scasum_(n, &x[j * x_dim1 + 1], &c__1); if (xnorm <= 0.f) { *resid = 1.f / eps; } else { /* Computing MAX */ r__1 = *resid, r__2 = bnorm / anorm / xnorm / eps; *resid = dmax(r__1,r__2); } /* L20: */ } return 0; /* End of CSPT02 */ } /* cspt02_ */