/* cdrvpt.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Common Block Declarations */ struct { integer infot, nunit; logical ok, lerr; } infoc_; #define infoc_1 infoc_ struct { char srnamt[32]; } srnamc_; #define srnamc_1 srnamc_ /* Table of constant values */ static integer c__2 = 2; static integer c__0 = 0; static integer c_n1 = -1; static integer c__1 = 1; static real c_b24 = 1.f; static real c_b25 = 0.f; static complex c_b62 = {0.f,0.f}; /* Subroutine */ int cdrvpt_(logical *dotype, integer *nn, integer *nval, integer *nrhs, real *thresh, logical *tsterr, complex *a, real *d__, complex *e, complex *b, complex *x, complex *xact, complex *work, real *rwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 0,0,0,1 }; /* Format strings */ static char fmt_9999[] = "(1x,a,\002, N =\002,i5,\002, type \002,i2,\002" ", test \002,i2,\002, ratio = \002,g12.5)"; static char fmt_9998[] = "(1x,a,\002, FACT='\002,a1,\002', N =\002,i5" ",\002, type \002,i2,\002, test \002,i2,\002, ratio = \002,g12.5)"; /* System generated locals */ integer i__1, i__2, i__3, i__4, i__5; real r__1, r__2; /* Builtin functions */ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); double c_abs(complex *); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Local variables */ integer i__, j, k, n; real z__[3]; integer k1, ia, in, kl, ku, ix, nt, lda; char fact[1]; real cond; integer mode; real dmax__; integer imat, info; char path[3], dist[1], type__[1]; integer nrun, ifact; extern /* Subroutine */ int cget04_(integer *, integer *, complex *, integer *, complex *, integer *, real *, real *); integer nfail, iseed[4]; real rcond; extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *); integer nimat; extern doublereal sget06_(real *, real *); extern /* Subroutine */ int cptt01_(integer *, real *, complex *, real *, complex *, complex *, real *); real anorm; extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, complex *, integer *), cptt02_(char *, integer *, integer *, real *, complex *, complex *, integer *, complex *, integer *, real *), cptt05_(integer *, integer *, real *, complex *, complex *, integer *, complex *, integer *, complex *, integer *, real *, real *, real *); integer izero, nerrs; extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, integer *), cptsv_(integer *, integer *, real *, complex *, complex *, integer *, integer *); logical zerot; extern /* Subroutine */ int clatb4_(char *, integer *, integer *, integer *, char *, integer *, integer *, real *, integer *, real *, char * ), aladhd_(integer *, char *), alaerh_(char *, char *, integer *, integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *); real rcondc; extern doublereal clanht_(char *, integer *, real *, complex *); extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer *), clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *), claset_(char *, integer *, integer *, complex *, complex *, complex *, integer *), claptm_( char *, integer *, integer *, real *, real *, complex *, complex * , integer *, real *, complex *, integer *); extern integer isamax_(integer *, real *, integer *); extern /* Subroutine */ int alasvm_(char *, integer *, integer *, integer *, integer *), clarnv_(integer *, integer *, integer *, complex *), clatms_(integer *, integer *, char *, integer *, char *, real *, integer *, real *, real *, integer *, integer *, char * , complex *, integer *, complex *, integer *); real ainvnm; extern doublereal scasum_(integer *, complex *, integer *); extern /* Subroutine */ int cpttrf_(integer *, real *, complex *, integer *), slarnv_(integer *, integer *, integer *, real *), cerrvx_( char *, integer *); real result[6]; extern /* Subroutine */ int cpttrs_(char *, integer *, integer *, real *, complex *, complex *, integer *, integer *), cptsvx_(char *, integer *, integer *, real *, complex *, real *, complex *, complex *, integer *, complex *, integer *, real *, real *, real * , complex *, real *, integer *); /* Fortran I/O blocks */ static cilist io___35 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___38 = { 0, 0, 0, fmt_9998, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CDRVPT tests CPTSV and -SVX. */ /* Arguments */ /* ========= */ /* DOTYPE (input) LOGICAL array, dimension (NTYPES) */ /* The matrix types to be used for testing. Matrices of type j */ /* (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */ /* .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */ /* NN (input) INTEGER */ /* The number of values of N contained in the vector NVAL. */ /* NVAL (input) INTEGER array, dimension (NN) */ /* The values of the matrix dimension N. */ /* NRHS (input) INTEGER */ /* The number of right hand side vectors to be generated for */ /* each linear system. */ /* THRESH (input) REAL */ /* The threshold value for the test ratios. A result is */ /* included in the output file if RESULT >= THRESH. To have */ /* every test ratio printed, use THRESH = 0. */ /* TSTERR (input) LOGICAL */ /* Flag that indicates whether error exits are to be tested. */ /* A (workspace) COMPLEX array, dimension (NMAX*2) */ /* D (workspace) REAL array, dimension (NMAX*2) */ /* E (workspace) COMPLEX array, dimension (NMAX*2) */ /* B (workspace) COMPLEX array, dimension (NMAX*NRHS) */ /* X (workspace) COMPLEX array, dimension (NMAX*NRHS) */ /* XACT (workspace) COMPLEX array, dimension (NMAX*NRHS) */ /* WORK (workspace) COMPLEX array, dimension */ /* (NMAX*max(3,NRHS)) */ /* RWORK (workspace) REAL array, dimension (NMAX+2*NRHS) */ /* NOUT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --rwork; --work; --xact; --x; --b; --e; --d__; --a; --nval; --dotype; /* Function Body */ /* .. */ /* .. Executable Statements .. */ s_copy(path, "Complex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "PT", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { cerrvx_(path, nout); } infoc_1.infot = 0; i__1 = *nn; for (in = 1; in <= i__1; ++in) { /* Do for each value of N in NVAL. */ n = nval[in]; lda = max(1,n); nimat = 12; if (n <= 0) { nimat = 1; } i__2 = nimat; for (imat = 1; imat <= i__2; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (n > 0 && ! dotype[imat]) { goto L110; } /* Set up parameters with CLATB4. */ clatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, & cond, dist); zerot = imat >= 8 && imat <= 10; if (imat <= 6) { /* Type 1-6: generate a symmetric tridiagonal matrix of */ /* known condition number in lower triangular band storage. */ s_copy(srnamc_1.srnamt, "CLATMS", (ftnlen)32, (ftnlen)6); clatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &cond, &anorm, &kl, &ku, "B", &a[1], &c__2, &work[1], &info); /* Check the error code from CLATMS. */ if (info != 0) { alaerh_(path, "CLATMS", &info, &c__0, " ", &n, &n, &kl, & ku, &c_n1, &imat, &nfail, &nerrs, nout); goto L110; } izero = 0; /* Copy the matrix to D and E. */ ia = 1; i__3 = n - 1; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = i__; i__5 = ia; d__[i__4] = a[i__5].r; i__4 = i__; i__5 = ia + 1; e[i__4].r = a[i__5].r, e[i__4].i = a[i__5].i; ia += 2; /* L20: */ } if (n > 0) { i__3 = n; i__4 = ia; d__[i__3] = a[i__4].r; } } else { /* Type 7-12: generate a diagonally dominant matrix with */ /* unknown condition number in the vectors D and E. */ if (! zerot || ! dotype[7]) { /* Let D and E have values from [-1,1]. */ slarnv_(&c__2, iseed, &n, &d__[1]); i__3 = n - 1; clarnv_(&c__2, iseed, &i__3, &e[1]); /* Make the tridiagonal matrix diagonally dominant. */ if (n == 1) { d__[1] = dabs(d__[1]); } else { d__[1] = dabs(d__[1]) + c_abs(&e[1]); d__[n] = (r__1 = d__[n], dabs(r__1)) + c_abs(&e[n - 1] ); i__3 = n - 1; for (i__ = 2; i__ <= i__3; ++i__) { d__[i__] = (r__1 = d__[i__], dabs(r__1)) + c_abs(& e[i__]) + c_abs(&e[i__ - 1]); /* L30: */ } } /* Scale D and E so the maximum element is ANORM. */ ix = isamax_(&n, &d__[1], &c__1); dmax__ = d__[ix]; r__1 = anorm / dmax__; sscal_(&n, &r__1, &d__[1], &c__1); if (n > 1) { i__3 = n - 1; r__1 = anorm / dmax__; csscal_(&i__3, &r__1, &e[1], &c__1); } } else if (izero > 0) { /* Reuse the last matrix by copying back the zeroed out */ /* elements. */ if (izero == 1) { d__[1] = z__[1]; if (n > 1) { e[1].r = z__[2], e[1].i = 0.f; } } else if (izero == n) { i__3 = n - 1; e[i__3].r = z__[0], e[i__3].i = 0.f; d__[n] = z__[1]; } else { i__3 = izero - 1; e[i__3].r = z__[0], e[i__3].i = 0.f; d__[izero] = z__[1]; i__3 = izero; e[i__3].r = z__[2], e[i__3].i = 0.f; } } /* For types 8-10, set one row and column of the matrix to */ /* zero. */ izero = 0; if (imat == 8) { izero = 1; z__[1] = d__[1]; d__[1] = 0.f; if (n > 1) { z__[2] = e[1].r; e[1].r = 0.f, e[1].i = 0.f; } } else if (imat == 9) { izero = n; if (n > 1) { i__3 = n - 1; z__[0] = e[i__3].r; i__3 = n - 1; e[i__3].r = 0.f, e[i__3].i = 0.f; } z__[1] = d__[n]; d__[n] = 0.f; } else if (imat == 10) { izero = (n + 1) / 2; if (izero > 1) { i__3 = izero - 1; z__[0] = e[i__3].r; i__3 = izero - 1; e[i__3].r = 0.f, e[i__3].i = 0.f; i__3 = izero; z__[2] = e[i__3].r; i__3 = izero; e[i__3].r = 0.f, e[i__3].i = 0.f; } z__[1] = d__[izero]; d__[izero] = 0.f; } } /* Generate NRHS random solution vectors. */ ix = 1; i__3 = *nrhs; for (j = 1; j <= i__3; ++j) { clarnv_(&c__2, iseed, &n, &xact[ix]); ix += lda; /* L40: */ } /* Set the right hand side. */ claptm_("Lower", &n, nrhs, &c_b24, &d__[1], &e[1], &xact[1], &lda, &c_b25, &b[1], &lda); for (ifact = 1; ifact <= 2; ++ifact) { if (ifact == 1) { *(unsigned char *)fact = 'F'; } else { *(unsigned char *)fact = 'N'; } /* Compute the condition number for comparison with */ /* the value returned by CPTSVX. */ if (zerot) { if (ifact == 1) { goto L100; } rcondc = 0.f; } else if (ifact == 1) { /* Compute the 1-norm of A. */ anorm = clanht_("1", &n, &d__[1], &e[1]); scopy_(&n, &d__[1], &c__1, &d__[n + 1], &c__1); if (n > 1) { i__3 = n - 1; ccopy_(&i__3, &e[1], &c__1, &e[n + 1], &c__1); } /* Factor the matrix A. */ cpttrf_(&n, &d__[n + 1], &e[n + 1], &info); /* Use CPTTRS to solve for one column at a time of */ /* inv(A), computing the maximum column sum as we go. */ ainvnm = 0.f; i__3 = n; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = n; for (j = 1; j <= i__4; ++j) { i__5 = j; x[i__5].r = 0.f, x[i__5].i = 0.f; /* L50: */ } i__4 = i__; x[i__4].r = 1.f, x[i__4].i = 0.f; cpttrs_("Lower", &n, &c__1, &d__[n + 1], &e[n + 1], & x[1], &lda, &info); /* Computing MAX */ r__1 = ainvnm, r__2 = scasum_(&n, &x[1], &c__1); ainvnm = dmax(r__1,r__2); /* L60: */ } /* Compute the 1-norm condition number of A. */ if (anorm <= 0.f || ainvnm <= 0.f) { rcondc = 1.f; } else { rcondc = 1.f / anorm / ainvnm; } } if (ifact == 2) { /* --- Test CPTSV -- */ scopy_(&n, &d__[1], &c__1, &d__[n + 1], &c__1); if (n > 1) { i__3 = n - 1; ccopy_(&i__3, &e[1], &c__1, &e[n + 1], &c__1); } clacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], &lda); /* Factor A as L*D*L' and solve the system A*X = B. */ s_copy(srnamc_1.srnamt, "CPTSV ", (ftnlen)32, (ftnlen)6); cptsv_(&n, nrhs, &d__[n + 1], &e[n + 1], &x[1], &lda, & info); /* Check error code from CPTSV . */ if (info != izero) { alaerh_(path, "CPTSV ", &info, &izero, " ", &n, &n, & c__1, &c__1, nrhs, &imat, &nfail, &nerrs, nout); } nt = 0; if (izero == 0) { /* Check the factorization by computing the ratio */ /* norm(L*D*L' - A) / (n * norm(A) * EPS ) */ cptt01_(&n, &d__[1], &e[1], &d__[n + 1], &e[n + 1], & work[1], result); /* Compute the residual in the solution. */ clacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda); cptt02_("Lower", &n, nrhs, &d__[1], &e[1], &x[1], & lda, &work[1], &lda, &result[1]); /* Check solution from generated exact solution. */ cget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[2]); nt = 3; } /* Print information about the tests that did not pass */ /* the threshold. */ i__3 = nt; for (k = 1; k <= i__3; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } io___35.ciunit = *nout; s_wsfe(&io___35); do_fio(&c__1, "CPTSV ", (ftnlen)6); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&result[k - 1], (ftnlen) sizeof(real)); e_wsfe(); ++nfail; } /* L70: */ } nrun += nt; } /* --- Test CPTSVX --- */ if (ifact > 1) { /* Initialize D( N+1:2*N ) and E( N+1:2*N ) to zero. */ i__3 = n - 1; for (i__ = 1; i__ <= i__3; ++i__) { d__[n + i__] = 0.f; i__4 = n + i__; e[i__4].r = 0.f, e[i__4].i = 0.f; /* L80: */ } if (n > 0) { d__[n + n] = 0.f; } } claset_("Full", &n, nrhs, &c_b62, &c_b62, &x[1], &lda); /* Solve the system and compute the condition number and */ /* error bounds using CPTSVX. */ s_copy(srnamc_1.srnamt, "CPTSVX", (ftnlen)32, (ftnlen)6); cptsvx_(fact, &n, nrhs, &d__[1], &e[1], &d__[n + 1], &e[n + 1] , &b[1], &lda, &x[1], &lda, &rcond, &rwork[1], &rwork[ *nrhs + 1], &work[1], &rwork[(*nrhs << 1) + 1], &info); /* Check the error code from CPTSVX. */ if (info != izero) { alaerh_(path, "CPTSVX", &info, &izero, fact, &n, &n, & c__1, &c__1, nrhs, &imat, &nfail, &nerrs, nout); } if (izero == 0) { if (ifact == 2) { /* Check the factorization by computing the ratio */ /* norm(L*D*L' - A) / (n * norm(A) * EPS ) */ k1 = 1; cptt01_(&n, &d__[1], &e[1], &d__[n + 1], &e[n + 1], & work[1], result); } else { k1 = 2; } /* Compute the residual in the solution. */ clacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda); cptt02_("Lower", &n, nrhs, &d__[1], &e[1], &x[1], &lda, & work[1], &lda, &result[1]); /* Check solution from generated exact solution. */ cget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, & result[2]); /* Check error bounds from iterative refinement. */ cptt05_(&n, nrhs, &d__[1], &e[1], &b[1], &lda, &x[1], & lda, &xact[1], &lda, &rwork[1], &rwork[*nrhs + 1], &result[3]); } else { k1 = 6; } /* Check the reciprocal of the condition number. */ result[5] = sget06_(&rcond, &rcondc); /* Print information about the tests that did not pass */ /* the threshold. */ for (k = k1; k <= 6; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } io___38.ciunit = *nout; s_wsfe(&io___38); do_fio(&c__1, "CPTSVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof( real)); e_wsfe(); ++nfail; } /* L90: */ } nrun = nrun + 7 - k1; L100: ; } L110: ; } /* L120: */ } /* Print a summary of the results. */ alasvm_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of CDRVPT */ } /* cdrvpt_ */