/* ssbt21.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; static real c_b22 = 1.f; static real c_b23 = 0.f; /* Subroutine */ int ssbt21_(char *uplo, integer *n, integer *ka, integer *ks, real *a, integer *lda, real *d__, real *e, real *u, integer *ldu, real *work, real *result) { /* System generated locals */ integer a_dim1, a_offset, u_dim1, u_offset, i__1, i__2, i__3, i__4; real r__1, r__2; /* Local variables */ integer j, jc, jr, lw, ika; real ulp, unfl; extern /* Subroutine */ int sspr_(char *, integer *, real *, real *, integer *, real *), sspr2_(char *, integer *, real *, real *, integer *, real *, integer *, real *); extern logical lsame_(char *, char *); extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *); real anorm; char cuplo[1]; logical lower; real wnorm; extern doublereal slamch_(char *), slange_(char *, integer *, integer *, real *, integer *, real *), slansb_(char *, char *, integer *, integer *, real *, integer *, real *), slansp_(char *, char *, integer *, real *, real *); /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SSBT21 generally checks a decomposition of the form */ /* A = U S U' */ /* where ' means transpose, A is symmetric banded, U is */ /* orthogonal, and S is diagonal (if KS=0) or symmetric */ /* tridiagonal (if KS=1). */ /* Specifically: */ /* RESULT(1) = | A - U S U' | / ( |A| n ulp ) *and* */ /* RESULT(2) = | I - UU' | / ( n ulp ) */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER */ /* If UPLO='U', the upper triangle of A and V will be used and */ /* the (strictly) lower triangle will not be referenced. */ /* If UPLO='L', the lower triangle of A and V will be used and */ /* the (strictly) upper triangle will not be referenced. */ /* N (input) INTEGER */ /* The size of the matrix. If it is zero, SSBT21 does nothing. */ /* It must be at least zero. */ /* KA (input) INTEGER */ /* The bandwidth of the matrix A. It must be at least zero. If */ /* it is larger than N-1, then max( 0, N-1 ) will be used. */ /* KS (input) INTEGER */ /* The bandwidth of the matrix S. It may only be zero or one. */ /* If zero, then S is diagonal, and E is not referenced. If */ /* one, then S is symmetric tri-diagonal. */ /* A (input) REAL array, dimension (LDA, N) */ /* The original (unfactored) matrix. It is assumed to be */ /* symmetric, and only the upper (UPLO='U') or only the lower */ /* (UPLO='L') will be referenced. */ /* LDA (input) INTEGER */ /* The leading dimension of A. It must be at least 1 */ /* and at least min( KA, N-1 ). */ /* D (input) REAL array, dimension (N) */ /* The diagonal of the (symmetric tri-) diagonal matrix S. */ /* E (input) REAL array, dimension (N-1) */ /* The off-diagonal of the (symmetric tri-) diagonal matrix S. */ /* E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and */ /* (3,2) element, etc. */ /* Not referenced if KS=0. */ /* U (input) REAL array, dimension (LDU, N) */ /* The orthogonal matrix in the decomposition, expressed as a */ /* dense matrix (i.e., not as a product of Householder */ /* transformations, Givens transformations, etc.) */ /* LDU (input) INTEGER */ /* The leading dimension of U. LDU must be at least N and */ /* at least 1. */ /* WORK (workspace) REAL array, dimension (N**2+N) */ /* RESULT (output) REAL array, dimension (2) */ /* The values computed by the two tests described above. The */ /* values are currently limited to 1/ulp, to avoid overflow. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Constants */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --d__; --e; u_dim1 = *ldu; u_offset = 1 + u_dim1; u -= u_offset; --work; --result; /* Function Body */ result[1] = 0.f; result[2] = 0.f; if (*n <= 0) { return 0; } /* Computing MAX */ /* Computing MIN */ i__3 = *n - 1; i__1 = 0, i__2 = min(i__3,*ka); ika = max(i__1,i__2); lw = *n * (*n + 1) / 2; if (lsame_(uplo, "U")) { lower = FALSE_; *(unsigned char *)cuplo = 'U'; } else { lower = TRUE_; *(unsigned char *)cuplo = 'L'; } unfl = slamch_("Safe minimum"); ulp = slamch_("Epsilon") * slamch_("Base"); /* Some Error Checks */ /* Do Test 1 */ /* Norm of A: */ /* Computing MAX */ r__1 = slansb_("1", cuplo, n, &ika, &a[a_offset], lda, &work[1]); anorm = dmax(r__1,unfl); /* Compute error matrix: Error = A - U S U' */ /* Copy A from SB to SP storage format. */ j = 0; i__1 = *n; for (jc = 1; jc <= i__1; ++jc) { if (lower) { /* Computing MIN */ i__3 = ika + 1, i__4 = *n + 1 - jc; i__2 = min(i__3,i__4); for (jr = 1; jr <= i__2; ++jr) { ++j; work[j] = a[jr + jc * a_dim1]; /* L10: */ } i__2 = *n + 1 - jc; for (jr = ika + 2; jr <= i__2; ++jr) { ++j; work[j] = 0.f; /* L20: */ } } else { i__2 = jc; for (jr = ika + 2; jr <= i__2; ++jr) { ++j; work[j] = 0.f; /* L30: */ } /* Computing MIN */ i__2 = ika, i__3 = jc - 1; for (jr = min(i__2,i__3); jr >= 0; --jr) { ++j; work[j] = a[ika + 1 - jr + jc * a_dim1]; /* L40: */ } } /* L50: */ } i__1 = *n; for (j = 1; j <= i__1; ++j) { r__1 = -d__[j]; sspr_(cuplo, n, &r__1, &u[j * u_dim1 + 1], &c__1, &work[1]) ; /* L60: */ } if (*n > 1 && *ks == 1) { i__1 = *n - 1; for (j = 1; j <= i__1; ++j) { r__1 = -e[j]; sspr2_(cuplo, n, &r__1, &u[j * u_dim1 + 1], &c__1, &u[(j + 1) * u_dim1 + 1], &c__1, &work[1]); /* L70: */ } } wnorm = slansp_("1", cuplo, n, &work[1], &work[lw + 1]); if (anorm > wnorm) { result[1] = wnorm / anorm / (*n * ulp); } else { if (anorm < 1.f) { /* Computing MIN */ r__1 = wnorm, r__2 = *n * anorm; result[1] = dmin(r__1,r__2) / anorm / (*n * ulp); } else { /* Computing MIN */ r__1 = wnorm / anorm, r__2 = (real) (*n); result[1] = dmin(r__1,r__2) / (*n * ulp); } } /* Do Test 2 */ /* Compute UU' - I */ sgemm_("N", "C", n, n, n, &c_b22, &u[u_offset], ldu, &u[u_offset], ldu, & c_b23, &work[1], n); i__1 = *n; for (j = 1; j <= i__1; ++j) { work[(*n + 1) * (j - 1) + 1] += -1.f; /* L80: */ } /* Computing MIN */ /* Computing 2nd power */ i__1 = *n; r__1 = slange_("1", n, n, &work[1], n, &work[i__1 * i__1 + 1]), r__2 = (real) (*n); result[2] = dmin(r__1,r__2) / (*n * ulp); return 0; /* End of SSBT21 */ } /* ssbt21_ */