/* dort01.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static doublereal c_b7 = 0.; static doublereal c_b8 = 1.; static doublereal c_b10 = -1.; static integer c__1 = 1; /* Subroutine */ int dort01_(char *rowcol, integer *m, integer *n, doublereal *u, integer *ldu, doublereal *work, integer *lwork, doublereal *resid) { /* System generated locals */ integer u_dim1, u_offset, i__1, i__2; doublereal d__1, d__2; /* Local variables */ integer i__, j, k; doublereal eps, tmp; extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, integer *); extern logical lsame_(char *, char *); integer mnmin; extern /* Subroutine */ int dsyrk_(char *, char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, integer *); extern doublereal dlamch_(char *); extern /* Subroutine */ int dlaset_(char *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *); extern doublereal dlansy_(char *, char *, integer *, doublereal *, integer *, doublereal *); integer ldwork; char transu[1]; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DORT01 checks that the matrix U is orthogonal by computing the ratio */ /* RESID = norm( I - U*U' ) / ( n * EPS ), if ROWCOL = 'R', */ /* or */ /* RESID = norm( I - U'*U ) / ( m * EPS ), if ROWCOL = 'C'. */ /* Alternatively, if there isn't sufficient workspace to form */ /* I - U*U' or I - U'*U, the ratio is computed as */ /* RESID = abs( I - U*U' ) / ( n * EPS ), if ROWCOL = 'R', */ /* or */ /* RESID = abs( I - U'*U ) / ( m * EPS ), if ROWCOL = 'C'. */ /* where EPS is the machine precision. ROWCOL is used only if m = n; */ /* if m > n, ROWCOL is assumed to be 'C', and if m < n, ROWCOL is */ /* assumed to be 'R'. */ /* Arguments */ /* ========= */ /* ROWCOL (input) CHARACTER */ /* Specifies whether the rows or columns of U should be checked */ /* for orthogonality. Used only if M = N. */ /* = 'R': Check for orthogonal rows of U */ /* = 'C': Check for orthogonal columns of U */ /* M (input) INTEGER */ /* The number of rows of the matrix U. */ /* N (input) INTEGER */ /* The number of columns of the matrix U. */ /* U (input) DOUBLE PRECISION array, dimension (LDU,N) */ /* The orthogonal matrix U. U is checked for orthogonal columns */ /* if m > n or if m = n and ROWCOL = 'C'. U is checked for */ /* orthogonal rows if m < n or if m = n and ROWCOL = 'R'. */ /* LDU (input) INTEGER */ /* The leading dimension of the array U. LDU >= max(1,M). */ /* WORK (workspace) DOUBLE PRECISION array, dimension (LWORK) */ /* LWORK (input) INTEGER */ /* The length of the array WORK. For best performance, LWORK */ /* should be at least N*(N+1) if ROWCOL = 'C' or M*(M+1) if */ /* ROWCOL = 'R', but the test will be done even if LWORK is 0. */ /* RESID (output) DOUBLE PRECISION */ /* RESID = norm( I - U * U' ) / ( n * EPS ), if ROWCOL = 'R', or */ /* RESID = norm( I - U' * U ) / ( m * EPS ), if ROWCOL = 'C'. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ u_dim1 = *ldu; u_offset = 1 + u_dim1; u -= u_offset; --work; /* Function Body */ *resid = 0.; /* Quick return if possible */ if (*m <= 0 || *n <= 0) { return 0; } eps = dlamch_("Precision"); if (*m < *n || *m == *n && lsame_(rowcol, "R")) { *(unsigned char *)transu = 'N'; k = *n; } else { *(unsigned char *)transu = 'T'; k = *m; } mnmin = min(*m,*n); if ((mnmin + 1) * mnmin <= *lwork) { ldwork = mnmin; } else { ldwork = 0; } if (ldwork > 0) { /* Compute I - U*U' or I - U'*U. */ dlaset_("Upper", &mnmin, &mnmin, &c_b7, &c_b8, &work[1], &ldwork); dsyrk_("Upper", transu, &mnmin, &k, &c_b10, &u[u_offset], ldu, &c_b8, &work[1], &ldwork); /* Compute norm( I - U*U' ) / ( K * EPS ) . */ *resid = dlansy_("1", "Upper", &mnmin, &work[1], &ldwork, &work[ ldwork * mnmin + 1]); *resid = *resid / (doublereal) k / eps; } else if (*(unsigned char *)transu == 'T') { /* Find the maximum element in abs( I - U'*U ) / ( m * EPS ) */ i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j; for (i__ = 1; i__ <= i__2; ++i__) { if (i__ != j) { tmp = 0.; } else { tmp = 1.; } tmp -= ddot_(m, &u[i__ * u_dim1 + 1], &c__1, &u[j * u_dim1 + 1], &c__1); /* Computing MAX */ d__1 = *resid, d__2 = abs(tmp); *resid = max(d__1,d__2); /* L10: */ } /* L20: */ } *resid = *resid / (doublereal) (*m) / eps; } else { /* Find the maximum element in abs( I - U*U' ) / ( n * EPS ) */ i__1 = *m; for (j = 1; j <= i__1; ++j) { i__2 = j; for (i__ = 1; i__ <= i__2; ++i__) { if (i__ != j) { tmp = 0.; } else { tmp = 1.; } tmp -= ddot_(n, &u[j + u_dim1], ldu, &u[i__ + u_dim1], ldu); /* Computing MAX */ d__1 = *resid, d__2 = abs(tmp); *resid = max(d__1,d__2); /* L30: */ } /* L40: */ } *resid = *resid / (doublereal) (*n) / eps; } return 0; /* End of DORT01 */ } /* dort01_ */