/* ztptri.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static doublecomplex c_b1 = {1.,0.}; static integer c__1 = 1; /* Subroutine */ int ztptri_(char *uplo, char *diag, integer *n, doublecomplex *ap, integer *info) { /* System generated locals */ integer i__1, i__2; doublecomplex z__1; /* Builtin functions */ void z_div(doublecomplex *, doublecomplex *, doublecomplex *); /* Local variables */ integer j, jc, jj; doublecomplex ajj; extern logical lsame_(char *, char *); extern /* Subroutine */ int zscal_(integer *, doublecomplex *, doublecomplex *, integer *); logical upper; extern /* Subroutine */ int ztpmv_(char *, char *, char *, integer *, doublecomplex *, doublecomplex *, integer *), xerbla_(char *, integer *); integer jclast; logical nounit; /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZTPTRI computes the inverse of a complex upper or lower triangular */ /* matrix A stored in packed format. */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER*1 */ /* = 'U': A is upper triangular; */ /* = 'L': A is lower triangular. */ /* DIAG (input) CHARACTER*1 */ /* = 'N': A is non-unit triangular; */ /* = 'U': A is unit triangular. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* AP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2) */ /* On entry, the upper or lower triangular matrix A, stored */ /* columnwise in a linear array. The j-th column of A is stored */ /* in the array AP as follows: */ /* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */ /* if UPLO = 'L', AP(i + (j-1)*((2*n-j)/2) = A(i,j) for j<=i<=n. */ /* See below for further details. */ /* On exit, the (triangular) inverse of the original matrix, in */ /* the same packed storage format. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* > 0: if INFO = i, A(i,i) is exactly zero. The triangular */ /* matrix is singular and its inverse can not be computed. */ /* Further Details */ /* =============== */ /* A triangular matrix A can be transferred to packed storage using one */ /* of the following program segments: */ /* UPLO = 'U': UPLO = 'L': */ /* JC = 1 JC = 1 */ /* DO 2 J = 1, N DO 2 J = 1, N */ /* DO 1 I = 1, J DO 1 I = J, N */ /* AP(JC+I-1) = A(I,J) AP(JC+I-J) = A(I,J) */ /* 1 CONTINUE 1 CONTINUE */ /* JC = JC + J JC = JC + N - J + 1 */ /* 2 CONTINUE 2 CONTINUE */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --ap; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); nounit = lsame_(diag, "N"); if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (! nounit && ! lsame_(diag, "U")) { *info = -2; } else if (*n < 0) { *info = -3; } if (*info != 0) { i__1 = -(*info); xerbla_("ZTPTRI", &i__1); return 0; } /* Check for singularity if non-unit. */ if (nounit) { if (upper) { jj = 0; i__1 = *n; for (*info = 1; *info <= i__1; ++(*info)) { jj += *info; i__2 = jj; if (ap[i__2].r == 0. && ap[i__2].i == 0.) { return 0; } /* L10: */ } } else { jj = 1; i__1 = *n; for (*info = 1; *info <= i__1; ++(*info)) { i__2 = jj; if (ap[i__2].r == 0. && ap[i__2].i == 0.) { return 0; } jj = jj + *n - *info + 1; /* L20: */ } } *info = 0; } if (upper) { /* Compute inverse of upper triangular matrix. */ jc = 1; i__1 = *n; for (j = 1; j <= i__1; ++j) { if (nounit) { i__2 = jc + j - 1; z_div(&z__1, &c_b1, &ap[jc + j - 1]); ap[i__2].r = z__1.r, ap[i__2].i = z__1.i; i__2 = jc + j - 1; z__1.r = -ap[i__2].r, z__1.i = -ap[i__2].i; ajj.r = z__1.r, ajj.i = z__1.i; } else { z__1.r = -1., z__1.i = -0.; ajj.r = z__1.r, ajj.i = z__1.i; } /* Compute elements 1:j-1 of j-th column. */ i__2 = j - 1; ztpmv_("Upper", "No transpose", diag, &i__2, &ap[1], &ap[jc], & c__1); i__2 = j - 1; zscal_(&i__2, &ajj, &ap[jc], &c__1); jc += j; /* L30: */ } } else { /* Compute inverse of lower triangular matrix. */ jc = *n * (*n + 1) / 2; for (j = *n; j >= 1; --j) { if (nounit) { i__1 = jc; z_div(&z__1, &c_b1, &ap[jc]); ap[i__1].r = z__1.r, ap[i__1].i = z__1.i; i__1 = jc; z__1.r = -ap[i__1].r, z__1.i = -ap[i__1].i; ajj.r = z__1.r, ajj.i = z__1.i; } else { z__1.r = -1., z__1.i = -0.; ajj.r = z__1.r, ajj.i = z__1.i; } if (j < *n) { /* Compute elements j+1:n of j-th column. */ i__1 = *n - j; ztpmv_("Lower", "No transpose", diag, &i__1, &ap[jclast], &ap[ jc + 1], &c__1); i__1 = *n - j; zscal_(&i__1, &ajj, &ap[jc + 1], &c__1); } jclast = jc; jc = jc - *n + j - 2; /* L40: */ } } return 0; /* End of ZTPTRI */ } /* ztptri_ */