/* ztgexc.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Subroutine */ int ztgexc_(logical *wantq, logical *wantz, integer *n, doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb, doublecomplex *q, integer *ldq, doublecomplex *z__, integer *ldz, integer *ifst, integer *ilst, integer *info) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1, z_offset, i__1; /* Local variables */ integer here; extern /* Subroutine */ int ztgex2_(logical *, logical *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *, integer *), xerbla_(char *, integer *); /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZTGEXC reorders the generalized Schur decomposition of a complex */ /* matrix pair (A,B), using an unitary equivalence transformation */ /* (A, B) := Q * (A, B) * Z', so that the diagonal block of (A, B) with */ /* row index IFST is moved to row ILST. */ /* (A, B) must be in generalized Schur canonical form, that is, A and */ /* B are both upper triangular. */ /* Optionally, the matrices Q and Z of generalized Schur vectors are */ /* updated. */ /* Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)' */ /* Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)' */ /* Arguments */ /* ========= */ /* WANTQ (input) LOGICAL */ /* .TRUE. : update the left transformation matrix Q; */ /* .FALSE.: do not update Q. */ /* WANTZ (input) LOGICAL */ /* .TRUE. : update the right transformation matrix Z; */ /* .FALSE.: do not update Z. */ /* N (input) INTEGER */ /* The order of the matrices A and B. N >= 0. */ /* A (input/output) COMPLEX*16 array, dimension (LDA,N) */ /* On entry, the upper triangular matrix A in the pair (A, B). */ /* On exit, the updated matrix A. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* B (input/output) COMPLEX*16 array, dimension (LDB,N) */ /* On entry, the upper triangular matrix B in the pair (A, B). */ /* On exit, the updated matrix B. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,N). */ /* Q (input/output) COMPLEX*16 array, dimension (LDZ,N) */ /* On entry, if WANTQ = .TRUE., the unitary matrix Q. */ /* On exit, the updated matrix Q. */ /* If WANTQ = .FALSE., Q is not referenced. */ /* LDQ (input) INTEGER */ /* The leading dimension of the array Q. LDQ >= 1; */ /* If WANTQ = .TRUE., LDQ >= N. */ /* Z (input/output) COMPLEX*16 array, dimension (LDZ,N) */ /* On entry, if WANTZ = .TRUE., the unitary matrix Z. */ /* On exit, the updated matrix Z. */ /* If WANTZ = .FALSE., Z is not referenced. */ /* LDZ (input) INTEGER */ /* The leading dimension of the array Z. LDZ >= 1; */ /* If WANTZ = .TRUE., LDZ >= N. */ /* IFST (input) INTEGER */ /* ILST (input/output) INTEGER */ /* Specify the reordering of the diagonal blocks of (A, B). */ /* The block with row index IFST is moved to row ILST, by a */ /* sequence of swapping between adjacent blocks. */ /* INFO (output) INTEGER */ /* =0: Successful exit. */ /* <0: if INFO = -i, the i-th argument had an illegal value. */ /* =1: The transformed matrix pair (A, B) would be too far */ /* from generalized Schur form; the problem is ill- */ /* conditioned. (A, B) may have been partially reordered, */ /* and ILST points to the first row of the current */ /* position of the block being moved. */ /* Further Details */ /* =============== */ /* Based on contributions by */ /* Bo Kagstrom and Peter Poromaa, Department of Computing Science, */ /* Umea University, S-901 87 Umea, Sweden. */ /* [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the */ /* Generalized Real Schur Form of a Regular Matrix Pair (A, B), in */ /* M.S. Moonen et al (eds), Linear Algebra for Large Scale and */ /* Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. */ /* [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified */ /* Eigenvalues of a Regular Matrix Pair (A, B) and Condition */ /* Estimation: Theory, Algorithms and Software, Report */ /* UMINF - 94.04, Department of Computing Science, Umea University, */ /* S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87. */ /* To appear in Numerical Algorithms, 1996. */ /* [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software */ /* for Solving the Generalized Sylvester Equation and Estimating the */ /* Separation between Regular Matrix Pairs, Report UMINF - 93.23, */ /* Department of Computing Science, Umea University, S-901 87 Umea, */ /* Sweden, December 1993, Revised April 1994, Also as LAPACK working */ /* Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1, */ /* 1996. */ /* ===================================================================== */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Decode and test input arguments. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; q_dim1 = *ldq; q_offset = 1 + q_dim1; q -= q_offset; z_dim1 = *ldz; z_offset = 1 + z_dim1; z__ -= z_offset; /* Function Body */ *info = 0; if (*n < 0) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } else if (*ldb < max(1,*n)) { *info = -7; } else if (*ldq < 1 || *wantq && *ldq < max(1,*n)) { *info = -9; } else if (*ldz < 1 || *wantz && *ldz < max(1,*n)) { *info = -11; } else if (*ifst < 1 || *ifst > *n) { *info = -12; } else if (*ilst < 1 || *ilst > *n) { *info = -13; } if (*info != 0) { i__1 = -(*info); xerbla_("ZTGEXC", &i__1); return 0; } /* Quick return if possible */ if (*n <= 1) { return 0; } if (*ifst == *ilst) { return 0; } if (*ifst < *ilst) { here = *ifst; L10: /* Swap with next one below */ ztgex2_(wantq, wantz, n, &a[a_offset], lda, &b[b_offset], ldb, &q[ q_offset], ldq, &z__[z_offset], ldz, &here, info); if (*info != 0) { *ilst = here; return 0; } ++here; if (here < *ilst) { goto L10; } --here; } else { here = *ifst - 1; L20: /* Swap with next one above */ ztgex2_(wantq, wantz, n, &a[a_offset], lda, &b[b_offset], ldb, &q[ q_offset], ldq, &z__[z_offset], ldz, &here, info); if (*info != 0) { *ilst = here; return 0; } --here; if (here >= *ilst) { goto L20; } ++here; } *ilst = here; return 0; /* End of ZTGEXC */ } /* ztgexc_ */