/* ztfttr.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Subroutine */ int ztfttr_(char *transr, char *uplo, integer *n, doublecomplex *arf, doublecomplex *a, integer *lda, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3, i__4; doublecomplex z__1; /* Builtin functions */ void d_cnjg(doublecomplex *, doublecomplex *); /* Local variables */ integer i__, j, k, l, n1, n2, ij, nt, nx2, np1x2; logical normaltransr; extern logical lsame_(char *, char *); logical lower; extern /* Subroutine */ int xerbla_(char *, integer *); logical nisodd; /* -- LAPACK routine (version 3.2) -- */ /* -- Contributed by Fred Gustavson of the IBM Watson Research Center -- */ /* -- November 2008 -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZTFTTR copies a triangular matrix A from rectangular full packed */ /* format (TF) to standard full format (TR). */ /* Arguments */ /* ========= */ /* TRANSR (input) CHARACTER */ /* = 'N': ARF is in Normal format; */ /* = 'C': ARF is in Conjugate-transpose format; */ /* UPLO (input) CHARACTER */ /* = 'U': A is upper triangular; */ /* = 'L': A is lower triangular. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* ARF (input) COMPLEX*16 array, dimension ( N*(N+1)/2 ), */ /* On entry, the upper or lower triangular matrix A stored in */ /* RFP format. For a further discussion see Notes below. */ /* A (output) COMPLEX*16 array, dimension ( LDA, N ) */ /* On exit, the triangular matrix A. If UPLO = 'U', the */ /* leading N-by-N upper triangular part of the array A contains */ /* the upper triangular matrix, and the strictly lower */ /* triangular part of A is not referenced. If UPLO = 'L', the */ /* leading N-by-N lower triangular part of the array A contains */ /* the lower triangular matrix, and the strictly upper */ /* triangular part of A is not referenced. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* Notes: */ /* ====== */ /* We first consider Standard Packed Format when N is even. */ /* We give an example where N = 6. */ /* AP is Upper AP is Lower */ /* 00 01 02 03 04 05 00 */ /* 11 12 13 14 15 10 11 */ /* 22 23 24 25 20 21 22 */ /* 33 34 35 30 31 32 33 */ /* 44 45 40 41 42 43 44 */ /* 55 50 51 52 53 54 55 */ /* Let TRANSR = 'N'. RFP holds AP as follows: */ /* For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last */ /* three columns of AP upper. The lower triangle A(4:6,0:2) consists of */ /* conjugate-transpose of the first three columns of AP upper. */ /* For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first */ /* three columns of AP lower. The upper triangle A(0:2,0:2) consists of */ /* conjugate-transpose of the last three columns of AP lower. */ /* To denote conjugate we place -- above the element. This covers the */ /* case N even and TRANSR = 'N'. */ /* RFP A RFP A */ /* -- -- -- */ /* 03 04 05 33 43 53 */ /* -- -- */ /* 13 14 15 00 44 54 */ /* -- */ /* 23 24 25 10 11 55 */ /* 33 34 35 20 21 22 */ /* -- */ /* 00 44 45 30 31 32 */ /* -- -- */ /* 01 11 55 40 41 42 */ /* -- -- -- */ /* 02 12 22 50 51 52 */ /* Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- */ /* transpose of RFP A above. One therefore gets: */ /* RFP A RFP A */ /* -- -- -- -- -- -- -- -- -- -- */ /* 03 13 23 33 00 01 02 33 00 10 20 30 40 50 */ /* -- -- -- -- -- -- -- -- -- -- */ /* 04 14 24 34 44 11 12 43 44 11 21 31 41 51 */ /* -- -- -- -- -- -- -- -- -- -- */ /* 05 15 25 35 45 55 22 53 54 55 22 32 42 52 */ /* We next consider Standard Packed Format when N is odd. */ /* We give an example where N = 5. */ /* AP is Upper AP is Lower */ /* 00 01 02 03 04 00 */ /* 11 12 13 14 10 11 */ /* 22 23 24 20 21 22 */ /* 33 34 30 31 32 33 */ /* 44 40 41 42 43 44 */ /* Let TRANSR = 'N'. RFP holds AP as follows: */ /* For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last */ /* three columns of AP upper. The lower triangle A(3:4,0:1) consists of */ /* conjugate-transpose of the first two columns of AP upper. */ /* For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first */ /* three columns of AP lower. The upper triangle A(0:1,1:2) consists of */ /* conjugate-transpose of the last two columns of AP lower. */ /* To denote conjugate we place -- above the element. This covers the */ /* case N odd and TRANSR = 'N'. */ /* RFP A RFP A */ /* -- -- */ /* 02 03 04 00 33 43 */ /* -- */ /* 12 13 14 10 11 44 */ /* 22 23 24 20 21 22 */ /* -- */ /* 00 33 34 30 31 32 */ /* -- -- */ /* 01 11 44 40 41 42 */ /* Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- */ /* transpose of RFP A above. One therefore gets: */ /* RFP A RFP A */ /* -- -- -- -- -- -- -- -- -- */ /* 02 12 22 00 01 00 10 20 30 40 50 */ /* -- -- -- -- -- -- -- -- -- */ /* 03 13 23 33 11 33 11 21 31 41 51 */ /* -- -- -- -- -- -- -- -- -- */ /* 04 14 24 34 44 43 44 22 32 42 52 */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda - 1 - 0 + 1; a_offset = 0 + a_dim1 * 0; a -= a_offset; /* Function Body */ *info = 0; normaltransr = lsame_(transr, "N"); lower = lsame_(uplo, "L"); if (! normaltransr && ! lsame_(transr, "C")) { *info = -1; } else if (! lower && ! lsame_(uplo, "U")) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*lda < max(1,*n)) { *info = -6; } if (*info != 0) { i__1 = -(*info); xerbla_("ZTFTTR", &i__1); return 0; } /* Quick return if possible */ if (*n <= 1) { if (*n == 1) { if (normaltransr) { a[0].r = arf[0].r, a[0].i = arf[0].i; } else { d_cnjg(&z__1, arf); a[0].r = z__1.r, a[0].i = z__1.i; } } return 0; } /* Size of array ARF(1:2,0:nt-1) */ nt = *n * (*n + 1) / 2; /* set N1 and N2 depending on LOWER: for N even N1=N2=K */ if (lower) { n2 = *n / 2; n1 = *n - n2; } else { n1 = *n / 2; n2 = *n - n1; } /* If N is odd, set NISODD = .TRUE., LDA=N+1 and A is (N+1)--by--K2. */ /* If N is even, set K = N/2 and NISODD = .FALSE., LDA=N and A is */ /* N--by--(N+1)/2. */ if (*n % 2 == 0) { k = *n / 2; nisodd = FALSE_; if (! lower) { np1x2 = *n + *n + 2; } } else { nisodd = TRUE_; if (! lower) { nx2 = *n + *n; } } if (nisodd) { /* N is odd */ if (normaltransr) { /* N is odd and TRANSR = 'N' */ if (lower) { /* SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) ) */ /* T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0) */ /* T1 -> a(0), T2 -> a(n), S -> a(n1); lda=n */ ij = 0; i__1 = n2; for (j = 0; j <= i__1; ++j) { i__2 = n2 + j; for (i__ = n1; i__ <= i__2; ++i__) { i__3 = n2 + j + i__ * a_dim1; d_cnjg(&z__1, &arf[ij]); a[i__3].r = z__1.r, a[i__3].i = z__1.i; ++ij; } i__2 = *n - 1; for (i__ = j; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; i__4 = ij; a[i__3].r = arf[i__4].r, a[i__3].i = arf[i__4].i; ++ij; } } } else { /* SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1) */ /* T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0) */ /* T1 -> a(n2), T2 -> a(n1), S -> a(0); lda=n */ ij = nt - *n; i__1 = n1; for (j = *n - 1; j >= i__1; --j) { i__2 = j; for (i__ = 0; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; i__4 = ij; a[i__3].r = arf[i__4].r, a[i__3].i = arf[i__4].i; ++ij; } i__2 = n1 - 1; for (l = j - n1; l <= i__2; ++l) { i__3 = j - n1 + l * a_dim1; d_cnjg(&z__1, &arf[ij]); a[i__3].r = z__1.r, a[i__3].i = z__1.i; ++ij; } ij -= nx2; } } } else { /* N is odd and TRANSR = 'C' */ if (lower) { /* SRPA for LOWER, TRANSPOSE and N is odd */ /* T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1) */ /* T1 -> A(0+0) , T2 -> A(1+0) , S -> A(0+n1*n1); lda=n1 */ ij = 0; i__1 = n2 - 1; for (j = 0; j <= i__1; ++j) { i__2 = j; for (i__ = 0; i__ <= i__2; ++i__) { i__3 = j + i__ * a_dim1; d_cnjg(&z__1, &arf[ij]); a[i__3].r = z__1.r, a[i__3].i = z__1.i; ++ij; } i__2 = *n - 1; for (i__ = n1 + j; i__ <= i__2; ++i__) { i__3 = i__ + (n1 + j) * a_dim1; i__4 = ij; a[i__3].r = arf[i__4].r, a[i__3].i = arf[i__4].i; ++ij; } } i__1 = *n - 1; for (j = n2; j <= i__1; ++j) { i__2 = n1 - 1; for (i__ = 0; i__ <= i__2; ++i__) { i__3 = j + i__ * a_dim1; d_cnjg(&z__1, &arf[ij]); a[i__3].r = z__1.r, a[i__3].i = z__1.i; ++ij; } } } else { /* SRPA for UPPER, TRANSPOSE and N is odd */ /* T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0) */ /* T1 -> A(n2*n2), T2 -> A(n1*n2), S -> A(0); lda = n2 */ ij = 0; i__1 = n1; for (j = 0; j <= i__1; ++j) { i__2 = *n - 1; for (i__ = n1; i__ <= i__2; ++i__) { i__3 = j + i__ * a_dim1; d_cnjg(&z__1, &arf[ij]); a[i__3].r = z__1.r, a[i__3].i = z__1.i; ++ij; } } i__1 = n1 - 1; for (j = 0; j <= i__1; ++j) { i__2 = j; for (i__ = 0; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; i__4 = ij; a[i__3].r = arf[i__4].r, a[i__3].i = arf[i__4].i; ++ij; } i__2 = *n - 1; for (l = n2 + j; l <= i__2; ++l) { i__3 = n2 + j + l * a_dim1; d_cnjg(&z__1, &arf[ij]); a[i__3].r = z__1.r, a[i__3].i = z__1.i; ++ij; } } } } } else { /* N is even */ if (normaltransr) { /* N is even and TRANSR = 'N' */ if (lower) { /* SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) ) */ /* T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0) */ /* T1 -> a(1), T2 -> a(0), S -> a(k+1); lda=n+1 */ ij = 0; i__1 = k - 1; for (j = 0; j <= i__1; ++j) { i__2 = k + j; for (i__ = k; i__ <= i__2; ++i__) { i__3 = k + j + i__ * a_dim1; d_cnjg(&z__1, &arf[ij]); a[i__3].r = z__1.r, a[i__3].i = z__1.i; ++ij; } i__2 = *n - 1; for (i__ = j; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; i__4 = ij; a[i__3].r = arf[i__4].r, a[i__3].i = arf[i__4].i; ++ij; } } } else { /* SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) ) */ /* T1 -> a(k+1,0) , T2 -> a(k,0), S -> a(0,0) */ /* T1 -> a(k+1), T2 -> a(k), S -> a(0); lda=n+1 */ ij = nt - *n - 1; i__1 = k; for (j = *n - 1; j >= i__1; --j) { i__2 = j; for (i__ = 0; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; i__4 = ij; a[i__3].r = arf[i__4].r, a[i__3].i = arf[i__4].i; ++ij; } i__2 = k - 1; for (l = j - k; l <= i__2; ++l) { i__3 = j - k + l * a_dim1; d_cnjg(&z__1, &arf[ij]); a[i__3].r = z__1.r, a[i__3].i = z__1.i; ++ij; } ij -= np1x2; } } } else { /* N is even and TRANSR = 'C' */ if (lower) { /* SRPA for LOWER, TRANSPOSE and N is even (see paper, A=B) */ /* T1 -> A(0,1) , T2 -> A(0,0) , S -> A(0,k+1) : */ /* T1 -> A(0+k) , T2 -> A(0+0) , S -> A(0+k*(k+1)); lda=k */ ij = 0; j = k; i__1 = *n - 1; for (i__ = k; i__ <= i__1; ++i__) { i__2 = i__ + j * a_dim1; i__3 = ij; a[i__2].r = arf[i__3].r, a[i__2].i = arf[i__3].i; ++ij; } i__1 = k - 2; for (j = 0; j <= i__1; ++j) { i__2 = j; for (i__ = 0; i__ <= i__2; ++i__) { i__3 = j + i__ * a_dim1; d_cnjg(&z__1, &arf[ij]); a[i__3].r = z__1.r, a[i__3].i = z__1.i; ++ij; } i__2 = *n - 1; for (i__ = k + 1 + j; i__ <= i__2; ++i__) { i__3 = i__ + (k + 1 + j) * a_dim1; i__4 = ij; a[i__3].r = arf[i__4].r, a[i__3].i = arf[i__4].i; ++ij; } } i__1 = *n - 1; for (j = k - 1; j <= i__1; ++j) { i__2 = k - 1; for (i__ = 0; i__ <= i__2; ++i__) { i__3 = j + i__ * a_dim1; d_cnjg(&z__1, &arf[ij]); a[i__3].r = z__1.r, a[i__3].i = z__1.i; ++ij; } } } else { /* SRPA for UPPER, TRANSPOSE and N is even (see paper, A=B) */ /* T1 -> A(0,k+1) , T2 -> A(0,k) , S -> A(0,0) */ /* T1 -> A(0+k*(k+1)) , T2 -> A(0+k*k) , S -> A(0+0)); lda=k */ ij = 0; i__1 = k; for (j = 0; j <= i__1; ++j) { i__2 = *n - 1; for (i__ = k; i__ <= i__2; ++i__) { i__3 = j + i__ * a_dim1; d_cnjg(&z__1, &arf[ij]); a[i__3].r = z__1.r, a[i__3].i = z__1.i; ++ij; } } i__1 = k - 2; for (j = 0; j <= i__1; ++j) { i__2 = j; for (i__ = 0; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; i__4 = ij; a[i__3].r = arf[i__4].r, a[i__3].i = arf[i__4].i; ++ij; } i__2 = *n - 1; for (l = k + 1 + j; l <= i__2; ++l) { i__3 = k + 1 + j + l * a_dim1; d_cnjg(&z__1, &arf[ij]); a[i__3].r = z__1.r, a[i__3].i = z__1.i; ++ij; } } /* Note that here J = K-1 */ i__1 = j; for (i__ = 0; i__ <= i__1; ++i__) { i__2 = i__ + j * a_dim1; i__3 = ij; a[i__2].r = arf[i__3].r, a[i__2].i = arf[i__3].i; ++ij; } } } } return 0; /* End of ZTFTTR */ } /* ztfttr_ */