/* zlaset.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Subroutine */ int zlaset_(char *uplo, integer *m, integer *n, doublecomplex *alpha, doublecomplex *beta, doublecomplex *a, integer * lda) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; /* Local variables */ integer i__, j; extern logical lsame_(char *, char *); /* -- LAPACK auxiliary routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZLASET initializes a 2-D array A to BETA on the diagonal and */ /* ALPHA on the offdiagonals. */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER*1 */ /* Specifies the part of the matrix A to be set. */ /* = 'U': Upper triangular part is set. The lower triangle */ /* is unchanged. */ /* = 'L': Lower triangular part is set. The upper triangle */ /* is unchanged. */ /* Otherwise: All of the matrix A is set. */ /* M (input) INTEGER */ /* On entry, M specifies the number of rows of A. */ /* N (input) INTEGER */ /* On entry, N specifies the number of columns of A. */ /* ALPHA (input) COMPLEX*16 */ /* All the offdiagonal array elements are set to ALPHA. */ /* BETA (input) COMPLEX*16 */ /* All the diagonal array elements are set to BETA. */ /* A (input/output) COMPLEX*16 array, dimension (LDA,N) */ /* On entry, the m by n matrix A. */ /* On exit, A(i,j) = ALPHA, 1 <= i <= m, 1 <= j <= n, i.ne.j; */ /* A(i,i) = BETA , 1 <= i <= min(m,n) */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,M). */ /* ===================================================================== */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; /* Function Body */ if (lsame_(uplo, "U")) { /* Set the diagonal to BETA and the strictly upper triangular */ /* part of the array to ALPHA. */ i__1 = *n; for (j = 2; j <= i__1; ++j) { /* Computing MIN */ i__3 = j - 1; i__2 = min(i__3,*m); for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; a[i__3].r = alpha->r, a[i__3].i = alpha->i; /* L10: */ } /* L20: */ } i__1 = min(*n,*m); for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__ + i__ * a_dim1; a[i__2].r = beta->r, a[i__2].i = beta->i; /* L30: */ } } else if (lsame_(uplo, "L")) { /* Set the diagonal to BETA and the strictly lower triangular */ /* part of the array to ALPHA. */ i__1 = min(*m,*n); for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = j + 1; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; a[i__3].r = alpha->r, a[i__3].i = alpha->i; /* L40: */ } /* L50: */ } i__1 = min(*n,*m); for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__ + i__ * a_dim1; a[i__2].r = beta->r, a[i__2].i = beta->i; /* L60: */ } } else { /* Set the array to BETA on the diagonal and ALPHA on the */ /* offdiagonal. */ i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; a[i__3].r = alpha->r, a[i__3].i = alpha->i; /* L70: */ } /* L80: */ } i__1 = min(*m,*n); for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__ + i__ * a_dim1; a[i__2].r = beta->r, a[i__2].i = beta->i; /* L90: */ } } return 0; /* End of ZLASET */ } /* zlaset_ */