/* zlapll.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Subroutine */ int zlapll_(integer *n, doublecomplex *x, integer *incx, doublecomplex *y, integer *incy, doublereal *ssmin) { /* System generated locals */ integer i__1; doublereal d__1, d__2, d__3; doublecomplex z__1, z__2, z__3, z__4; /* Builtin functions */ void d_cnjg(doublecomplex *, doublecomplex *); double z_abs(doublecomplex *); /* Local variables */ doublecomplex c__, a11, a12, a22, tau; extern /* Subroutine */ int dlas2_(doublereal *, doublereal *, doublereal *, doublereal *, doublereal *); extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *); doublereal ssmax; extern /* Subroutine */ int zaxpy_(integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *), zlarfg_( integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *); /* -- LAPACK auxiliary routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* Given two column vectors X and Y, let */ /* A = ( X Y ). */ /* The subroutine first computes the QR factorization of A = Q*R, */ /* and then computes the SVD of the 2-by-2 upper triangular matrix R. */ /* The smaller singular value of R is returned in SSMIN, which is used */ /* as the measurement of the linear dependency of the vectors X and Y. */ /* Arguments */ /* ========= */ /* N (input) INTEGER */ /* The length of the vectors X and Y. */ /* X (input/output) COMPLEX*16 array, dimension (1+(N-1)*INCX) */ /* On entry, X contains the N-vector X. */ /* On exit, X is overwritten. */ /* INCX (input) INTEGER */ /* The increment between successive elements of X. INCX > 0. */ /* Y (input/output) COMPLEX*16 array, dimension (1+(N-1)*INCY) */ /* On entry, Y contains the N-vector Y. */ /* On exit, Y is overwritten. */ /* INCY (input) INTEGER */ /* The increment between successive elements of Y. INCY > 0. */ /* SSMIN (output) DOUBLE PRECISION */ /* The smallest singular value of the N-by-2 matrix A = ( X Y ). */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Executable Statements .. */ /* Quick return if possible */ /* Parameter adjustments */ --y; --x; /* Function Body */ if (*n <= 1) { *ssmin = 0.; return 0; } /* Compute the QR factorization of the N-by-2 matrix ( X Y ) */ zlarfg_(n, &x[1], &x[*incx + 1], incx, &tau); a11.r = x[1].r, a11.i = x[1].i; x[1].r = 1., x[1].i = 0.; d_cnjg(&z__3, &tau); z__2.r = -z__3.r, z__2.i = -z__3.i; zdotc_(&z__4, n, &x[1], incx, &y[1], incy); z__1.r = z__2.r * z__4.r - z__2.i * z__4.i, z__1.i = z__2.r * z__4.i + z__2.i * z__4.r; c__.r = z__1.r, c__.i = z__1.i; zaxpy_(n, &c__, &x[1], incx, &y[1], incy); i__1 = *n - 1; zlarfg_(&i__1, &y[*incy + 1], &y[(*incy << 1) + 1], incy, &tau); a12.r = y[1].r, a12.i = y[1].i; i__1 = *incy + 1; a22.r = y[i__1].r, a22.i = y[i__1].i; /* Compute the SVD of 2-by-2 Upper triangular matrix. */ d__1 = z_abs(&a11); d__2 = z_abs(&a12); d__3 = z_abs(&a22); dlas2_(&d__1, &d__2, &d__3, ssmin, &ssmax); return 0; /* End of ZLAPLL */ } /* zlapll_ */