/* zlaev2.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Subroutine */ int zlaev2_(doublecomplex *a, doublecomplex *b, doublecomplex *c__, doublereal *rt1, doublereal *rt2, doublereal *cs1, doublecomplex *sn1) { /* System generated locals */ doublereal d__1, d__2, d__3; doublecomplex z__1, z__2; /* Builtin functions */ double z_abs(doublecomplex *); void d_cnjg(doublecomplex *, doublecomplex *); /* Local variables */ doublereal t; doublecomplex w; extern /* Subroutine */ int dlaev2_(doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *); /* -- LAPACK auxiliary routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZLAEV2 computes the eigendecomposition of a 2-by-2 Hermitian matrix */ /* [ A B ] */ /* [ CONJG(B) C ]. */ /* On return, RT1 is the eigenvalue of larger absolute value, RT2 is the */ /* eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right */ /* eigenvector for RT1, giving the decomposition */ /* [ CS1 CONJG(SN1) ] [ A B ] [ CS1 -CONJG(SN1) ] = [ RT1 0 ] */ /* [-SN1 CS1 ] [ CONJG(B) C ] [ SN1 CS1 ] [ 0 RT2 ]. */ /* Arguments */ /* ========= */ /* A (input) COMPLEX*16 */ /* The (1,1) element of the 2-by-2 matrix. */ /* B (input) COMPLEX*16 */ /* The (1,2) element and the conjugate of the (2,1) element of */ /* the 2-by-2 matrix. */ /* C (input) COMPLEX*16 */ /* The (2,2) element of the 2-by-2 matrix. */ /* RT1 (output) DOUBLE PRECISION */ /* The eigenvalue of larger absolute value. */ /* RT2 (output) DOUBLE PRECISION */ /* The eigenvalue of smaller absolute value. */ /* CS1 (output) DOUBLE PRECISION */ /* SN1 (output) COMPLEX*16 */ /* The vector (CS1, SN1) is a unit right eigenvector for RT1. */ /* Further Details */ /* =============== */ /* RT1 is accurate to a few ulps barring over/underflow. */ /* RT2 may be inaccurate if there is massive cancellation in the */ /* determinant A*C-B*B; higher precision or correctly rounded or */ /* correctly truncated arithmetic would be needed to compute RT2 */ /* accurately in all cases. */ /* CS1 and SN1 are accurate to a few ulps barring over/underflow. */ /* Overflow is possible only if RT1 is within a factor of 5 of overflow. */ /* Underflow is harmless if the input data is 0 or exceeds */ /* underflow_threshold / macheps. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ if (z_abs(b) == 0.) { w.r = 1., w.i = 0.; } else { d_cnjg(&z__2, b); d__1 = z_abs(b); z__1.r = z__2.r / d__1, z__1.i = z__2.i / d__1; w.r = z__1.r, w.i = z__1.i; } d__1 = a->r; d__2 = z_abs(b); d__3 = c__->r; dlaev2_(&d__1, &d__2, &d__3, rt1, rt2, cs1, &t); z__1.r = t * w.r, z__1.i = t * w.i; sn1->r = z__1.r, sn1->i = z__1.i; return 0; /* End of ZLAEV2 */ } /* zlaev2_ */