/* sptsvx.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; /* Subroutine */ int sptsvx_(char *fact, integer *n, integer *nrhs, real *d__, real *e, real *df, real *ef, real *b, integer *ldb, real *x, integer *ldx, real *rcond, real *ferr, real *berr, real *work, integer *info) { /* System generated locals */ integer b_dim1, b_offset, x_dim1, x_offset, i__1; /* Local variables */ extern logical lsame_(char *, char *); real anorm; extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, integer *); extern doublereal slamch_(char *); logical nofact; extern /* Subroutine */ int xerbla_(char *, integer *), slacpy_( char *, integer *, integer *, real *, integer *, real *, integer * ); extern doublereal slanst_(char *, integer *, real *, real *); extern /* Subroutine */ int sptcon_(integer *, real *, real *, real *, real *, real *, integer *), sptrfs_(integer *, integer *, real *, real *, real *, real *, real *, integer *, real *, integer *, real *, real *, real *, integer *), spttrf_(integer *, real *, real *, integer *), spttrs_(integer *, integer *, real *, real *, real *, integer *, integer *); /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SPTSVX uses the factorization A = L*D*L**T to compute the solution */ /* to a real system of linear equations A*X = B, where A is an N-by-N */ /* symmetric positive definite tridiagonal matrix and X and B are */ /* N-by-NRHS matrices. */ /* Error bounds on the solution and a condition estimate are also */ /* provided. */ /* Description */ /* =========== */ /* The following steps are performed: */ /* 1. If FACT = 'N', the matrix A is factored as A = L*D*L**T, where L */ /* is a unit lower bidiagonal matrix and D is diagonal. The */ /* factorization can also be regarded as having the form */ /* A = U**T*D*U. */ /* 2. If the leading i-by-i principal minor is not positive definite, */ /* then the routine returns with INFO = i. Otherwise, the factored */ /* form of A is used to estimate the condition number of the matrix */ /* A. If the reciprocal of the condition number is less than machine */ /* precision, INFO = N+1 is returned as a warning, but the routine */ /* still goes on to solve for X and compute error bounds as */ /* described below. */ /* 3. The system of equations is solved for X using the factored form */ /* of A. */ /* 4. Iterative refinement is applied to improve the computed solution */ /* matrix and calculate error bounds and backward error estimates */ /* for it. */ /* Arguments */ /* ========= */ /* FACT (input) CHARACTER*1 */ /* Specifies whether or not the factored form of A has been */ /* supplied on entry. */ /* = 'F': On entry, DF and EF contain the factored form of A. */ /* D, E, DF, and EF will not be modified. */ /* = 'N': The matrix A will be copied to DF and EF and */ /* factored. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* NRHS (input) INTEGER */ /* The number of right hand sides, i.e., the number of columns */ /* of the matrices B and X. NRHS >= 0. */ /* D (input) REAL array, dimension (N) */ /* The n diagonal elements of the tridiagonal matrix A. */ /* E (input) REAL array, dimension (N-1) */ /* The (n-1) subdiagonal elements of the tridiagonal matrix A. */ /* DF (input or output) REAL array, dimension (N) */ /* If FACT = 'F', then DF is an input argument and on entry */ /* contains the n diagonal elements of the diagonal matrix D */ /* from the L*D*L**T factorization of A. */ /* If FACT = 'N', then DF is an output argument and on exit */ /* contains the n diagonal elements of the diagonal matrix D */ /* from the L*D*L**T factorization of A. */ /* EF (input or output) REAL array, dimension (N-1) */ /* If FACT = 'F', then EF is an input argument and on entry */ /* contains the (n-1) subdiagonal elements of the unit */ /* bidiagonal factor L from the L*D*L**T factorization of A. */ /* If FACT = 'N', then EF is an output argument and on exit */ /* contains the (n-1) subdiagonal elements of the unit */ /* bidiagonal factor L from the L*D*L**T factorization of A. */ /* B (input) REAL array, dimension (LDB,NRHS) */ /* The N-by-NRHS right hand side matrix B. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,N). */ /* X (output) REAL array, dimension (LDX,NRHS) */ /* If INFO = 0 of INFO = N+1, the N-by-NRHS solution matrix X. */ /* LDX (input) INTEGER */ /* The leading dimension of the array X. LDX >= max(1,N). */ /* RCOND (output) REAL */ /* The reciprocal condition number of the matrix A. If RCOND */ /* is less than the machine precision (in particular, if */ /* RCOND = 0), the matrix is singular to working precision. */ /* This condition is indicated by a return code of INFO > 0. */ /* FERR (output) REAL array, dimension (NRHS) */ /* The forward error bound for each solution vector */ /* X(j) (the j-th column of the solution matrix X). */ /* If XTRUE is the true solution corresponding to X(j), FERR(j) */ /* is an estimated upper bound for the magnitude of the largest */ /* element in (X(j) - XTRUE) divided by the magnitude of the */ /* largest element in X(j). */ /* BERR (output) REAL array, dimension (NRHS) */ /* The componentwise relative backward error of each solution */ /* vector X(j) (i.e., the smallest relative change in any */ /* element of A or B that makes X(j) an exact solution). */ /* WORK (workspace) REAL array, dimension (2*N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* > 0: if INFO = i, and i is */ /* <= N: the leading minor of order i of A is */ /* not positive definite, so the factorization */ /* could not be completed, and the solution has not */ /* been computed. RCOND = 0 is returned. */ /* = N+1: U is nonsingular, but RCOND is less than machine */ /* precision, meaning that the matrix is singular */ /* to working precision. Nevertheless, the */ /* solution and error bounds are computed because */ /* there are a number of situations where the */ /* computed solution can be more accurate than the */ /* value of RCOND would suggest. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --d__; --e; --df; --ef; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; --ferr; --berr; --work; /* Function Body */ *info = 0; nofact = lsame_(fact, "N"); if (! nofact && ! lsame_(fact, "F")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*nrhs < 0) { *info = -3; } else if (*ldb < max(1,*n)) { *info = -9; } else if (*ldx < max(1,*n)) { *info = -11; } if (*info != 0) { i__1 = -(*info); xerbla_("SPTSVX", &i__1); return 0; } if (nofact) { /* Compute the L*D*L' (or U'*D*U) factorization of A. */ scopy_(n, &d__[1], &c__1, &df[1], &c__1); if (*n > 1) { i__1 = *n - 1; scopy_(&i__1, &e[1], &c__1, &ef[1], &c__1); } spttrf_(n, &df[1], &ef[1], info); /* Return if INFO is non-zero. */ if (*info > 0) { *rcond = 0.f; return 0; } } /* Compute the norm of the matrix A. */ anorm = slanst_("1", n, &d__[1], &e[1]); /* Compute the reciprocal of the condition number of A. */ sptcon_(n, &df[1], &ef[1], &anorm, rcond, &work[1], info); /* Compute the solution vectors X. */ slacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx); spttrs_(n, nrhs, &df[1], &ef[1], &x[x_offset], ldx, info); /* Use iterative refinement to improve the computed solutions and */ /* compute error bounds and backward error estimates for them. */ sptrfs_(n, nrhs, &d__[1], &e[1], &df[1], &ef[1], &b[b_offset], ldb, &x[ x_offset], ldx, &ferr[1], &berr[1], &work[1], info); /* Set INFO = N+1 if the matrix is singular to working precision. */ if (*rcond < slamch_("Epsilon")) { *info = *n + 1; } return 0; /* End of SPTSVX */ } /* sptsvx_ */