/* sggglm.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; static real c_b32 = -1.f; static real c_b34 = 1.f; /* Subroutine */ int sggglm_(integer *n, integer *m, integer *p, real *a, integer *lda, real *b, integer *ldb, real *d__, real *x, real *y, real *work, integer *lwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4; /* Local variables */ integer i__, nb, np, nb1, nb2, nb3, nb4, lopt; extern /* Subroutine */ int sgemv_(char *, integer *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *), scopy_(integer *, real *, integer *, real *, integer *), xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); extern /* Subroutine */ int sggqrf_(integer *, integer *, integer *, real *, integer *, real *, real *, integer *, real *, real *, integer * , integer *); integer lwkmin, lwkopt; logical lquery; extern /* Subroutine */ int sormqr_(char *, char *, integer *, integer *, integer *, real *, integer *, real *, real *, integer *, real *, integer *, integer *), sormrq_(char *, char *, integer *, integer *, integer *, real *, integer *, real *, real * , integer *, real *, integer *, integer *), strtrs_(char *, char *, char *, integer *, integer *, real *, integer *, real *, integer *, integer *); /* -- LAPACK driver routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SGGGLM solves a general Gauss-Markov linear model (GLM) problem: */ /* minimize || y ||_2 subject to d = A*x + B*y */ /* x */ /* where A is an N-by-M matrix, B is an N-by-P matrix, and d is a */ /* given N-vector. It is assumed that M <= N <= M+P, and */ /* rank(A) = M and rank( A B ) = N. */ /* Under these assumptions, the constrained equation is always */ /* consistent, and there is a unique solution x and a minimal 2-norm */ /* solution y, which is obtained using a generalized QR factorization */ /* of the matrices (A, B) given by */ /* A = Q*(R), B = Q*T*Z. */ /* (0) */ /* In particular, if matrix B is square nonsingular, then the problem */ /* GLM is equivalent to the following weighted linear least squares */ /* problem */ /* minimize || inv(B)*(d-A*x) ||_2 */ /* x */ /* where inv(B) denotes the inverse of B. */ /* Arguments */ /* ========= */ /* N (input) INTEGER */ /* The number of rows of the matrices A and B. N >= 0. */ /* M (input) INTEGER */ /* The number of columns of the matrix A. 0 <= M <= N. */ /* P (input) INTEGER */ /* The number of columns of the matrix B. P >= N-M. */ /* A (input/output) REAL array, dimension (LDA,M) */ /* On entry, the N-by-M matrix A. */ /* On exit, the upper triangular part of the array A contains */ /* the M-by-M upper triangular matrix R. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* B (input/output) REAL array, dimension (LDB,P) */ /* On entry, the N-by-P matrix B. */ /* On exit, if N <= P, the upper triangle of the subarray */ /* B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T; */ /* if N > P, the elements on and above the (N-P)th subdiagonal */ /* contain the N-by-P upper trapezoidal matrix T. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,N). */ /* D (input/output) REAL array, dimension (N) */ /* On entry, D is the left hand side of the GLM equation. */ /* On exit, D is destroyed. */ /* X (output) REAL array, dimension (M) */ /* Y (output) REAL array, dimension (P) */ /* On exit, X and Y are the solutions of the GLM problem. */ /* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. LWORK >= max(1,N+M+P). */ /* For optimum performance, LWORK >= M+min(N,P)+max(N,P)*NB, */ /* where NB is an upper bound for the optimal blocksizes for */ /* SGEQRF, SGERQF, SORMQR and SORMRQ. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit. */ /* < 0: if INFO = -i, the i-th argument had an illegal value. */ /* = 1: the upper triangular factor R associated with A in the */ /* generalized QR factorization of the pair (A, B) is */ /* singular, so that rank(A) < M; the least squares */ /* solution could not be computed. */ /* = 2: the bottom (N-M) by (N-M) part of the upper trapezoidal */ /* factor T associated with B in the generalized QR */ /* factorization of the pair (A, B) is singular, so that */ /* rank( A B ) < N; the least squares solution could not */ /* be computed. */ /* =================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --d__; --x; --y; --work; /* Function Body */ *info = 0; np = min(*n,*p); lquery = *lwork == -1; if (*n < 0) { *info = -1; } else if (*m < 0 || *m > *n) { *info = -2; } else if (*p < 0 || *p < *n - *m) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } else if (*ldb < max(1,*n)) { *info = -7; } /* Calculate workspace */ if (*info == 0) { if (*n == 0) { lwkmin = 1; lwkopt = 1; } else { nb1 = ilaenv_(&c__1, "SGEQRF", " ", n, m, &c_n1, &c_n1); nb2 = ilaenv_(&c__1, "SGERQF", " ", n, m, &c_n1, &c_n1); nb3 = ilaenv_(&c__1, "SORMQR", " ", n, m, p, &c_n1); nb4 = ilaenv_(&c__1, "SORMRQ", " ", n, m, p, &c_n1); /* Computing MAX */ i__1 = max(nb1,nb2), i__1 = max(i__1,nb3); nb = max(i__1,nb4); lwkmin = *m + *n + *p; lwkopt = *m + np + max(*n,*p) * nb; } work[1] = (real) lwkopt; if (*lwork < lwkmin && ! lquery) { *info = -12; } } if (*info != 0) { i__1 = -(*info); xerbla_("SGGGLM", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Compute the GQR factorization of matrices A and B: */ /* Q'*A = ( R11 ) M, Q'*B*Z' = ( T11 T12 ) M */ /* ( 0 ) N-M ( 0 T22 ) N-M */ /* M M+P-N N-M */ /* where R11 and T22 are upper triangular, and Q and Z are */ /* orthogonal. */ i__1 = *lwork - *m - np; sggqrf_(n, m, p, &a[a_offset], lda, &work[1], &b[b_offset], ldb, &work[*m + 1], &work[*m + np + 1], &i__1, info); lopt = work[*m + np + 1]; /* Update left-hand-side vector d = Q'*d = ( d1 ) M */ /* ( d2 ) N-M */ i__1 = max(1,*n); i__2 = *lwork - *m - np; sormqr_("Left", "Transpose", n, &c__1, m, &a[a_offset], lda, &work[1], & d__[1], &i__1, &work[*m + np + 1], &i__2, info); /* Computing MAX */ i__1 = lopt, i__2 = (integer) work[*m + np + 1]; lopt = max(i__1,i__2); /* Solve T22*y2 = d2 for y2 */ if (*n > *m) { i__1 = *n - *m; i__2 = *n - *m; strtrs_("Upper", "No transpose", "Non unit", &i__1, &c__1, &b[*m + 1 + (*m + *p - *n + 1) * b_dim1], ldb, &d__[*m + 1], &i__2, info); if (*info > 0) { *info = 1; return 0; } i__1 = *n - *m; scopy_(&i__1, &d__[*m + 1], &c__1, &y[*m + *p - *n + 1], &c__1); } /* Set y1 = 0 */ i__1 = *m + *p - *n; for (i__ = 1; i__ <= i__1; ++i__) { y[i__] = 0.f; /* L10: */ } /* Update d1 = d1 - T12*y2 */ i__1 = *n - *m; sgemv_("No transpose", m, &i__1, &c_b32, &b[(*m + *p - *n + 1) * b_dim1 + 1], ldb, &y[*m + *p - *n + 1], &c__1, &c_b34, &d__[1], &c__1); /* Solve triangular system: R11*x = d1 */ if (*m > 0) { strtrs_("Upper", "No Transpose", "Non unit", m, &c__1, &a[a_offset], lda, &d__[1], m, info); if (*info > 0) { *info = 2; return 0; } /* Copy D to X */ scopy_(m, &d__[1], &c__1, &x[1], &c__1); } /* Backward transformation y = Z'*y */ /* Computing MAX */ i__1 = 1, i__2 = *n - *p + 1; i__3 = max(1,*p); i__4 = *lwork - *m - np; sormrq_("Left", "Transpose", p, &c__1, &np, &b[max(i__1, i__2)+ b_dim1], ldb, &work[*m + 1], &y[1], &i__3, &work[*m + np + 1], &i__4, info); /* Computing MAX */ i__1 = lopt, i__2 = (integer) work[*m + np + 1]; work[1] = (real) (*m + np + max(i__1,i__2)); return 0; /* End of SGGGLM */ } /* sggglm_ */