/* dstevr.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__10 = 10; static integer c__1 = 1; static integer c__2 = 2; static integer c__3 = 3; static integer c__4 = 4; /* Subroutine */ int dstevr_(char *jobz, char *range, integer *n, doublereal * d__, doublereal *e, doublereal *vl, doublereal *vu, integer *il, integer *iu, doublereal *abstol, integer *m, doublereal *w, doublereal *z__, integer *ldz, integer *isuppz, doublereal *work, integer *lwork, integer *iwork, integer *liwork, integer *info) { /* System generated locals */ integer z_dim1, z_offset, i__1, i__2; doublereal d__1, d__2; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ integer i__, j, jj; doublereal eps, vll, vuu, tmp1; integer imax; doublereal rmin, rmax; logical test; doublereal tnrm; integer itmp1; extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, integer *); doublereal sigma; extern logical lsame_(char *, char *); char order[1]; extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, doublereal *, integer *), dswap_(integer *, doublereal *, integer *, doublereal *, integer *); integer lwmin; logical wantz; extern doublereal dlamch_(char *); logical alleig, indeig; integer iscale, ieeeok, indibl, indifl; logical valeig; doublereal safmin; extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); extern /* Subroutine */ int xerbla_(char *, integer *); doublereal bignum; extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *); integer indisp; extern /* Subroutine */ int dstein_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, integer *, integer *), dsterf_(integer *, doublereal *, doublereal *, integer *); integer indiwo; extern /* Subroutine */ int dstebz_(char *, char *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, integer *, doublereal *, integer *, integer *), dstemr_(char *, char *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, integer *, integer *, doublereal *, doublereal *, integer *, integer *, integer *, logical *, doublereal *, integer *, integer *, integer *, integer *); integer liwmin; logical tryrac; integer nsplit; doublereal smlnum; logical lquery; /* -- LAPACK driver routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DSTEVR computes selected eigenvalues and, optionally, eigenvectors */ /* of a real symmetric tridiagonal matrix T. Eigenvalues and */ /* eigenvectors can be selected by specifying either a range of values */ /* or a range of indices for the desired eigenvalues. */ /* Whenever possible, DSTEVR calls DSTEMR to compute the */ /* eigenspectrum using Relatively Robust Representations. DSTEMR */ /* computes eigenvalues by the dqds algorithm, while orthogonal */ /* eigenvectors are computed from various "good" L D L^T representations */ /* (also known as Relatively Robust Representations). Gram-Schmidt */ /* orthogonalization is avoided as far as possible. More specifically, */ /* the various steps of the algorithm are as follows. For the i-th */ /* unreduced block of T, */ /* (a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T */ /* is a relatively robust representation, */ /* (b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T to high */ /* relative accuracy by the dqds algorithm, */ /* (c) If there is a cluster of close eigenvalues, "choose" sigma_i */ /* close to the cluster, and go to step (a), */ /* (d) Given the approximate eigenvalue lambda_j of L_i D_i L_i^T, */ /* compute the corresponding eigenvector by forming a */ /* rank-revealing twisted factorization. */ /* The desired accuracy of the output can be specified by the input */ /* parameter ABSTOL. */ /* For more details, see "A new O(n^2) algorithm for the symmetric */ /* tridiagonal eigenvalue/eigenvector problem", by Inderjit Dhillon, */ /* Computer Science Division Technical Report No. UCB//CSD-97-971, */ /* UC Berkeley, May 1997. */ /* Note 1 : DSTEVR calls DSTEMR when the full spectrum is requested */ /* on machines which conform to the ieee-754 floating point standard. */ /* DSTEVR calls DSTEBZ and DSTEIN on non-ieee machines and */ /* when partial spectrum requests are made. */ /* Normal execution of DSTEMR may create NaNs and infinities and */ /* hence may abort due to a floating point exception in environments */ /* which do not handle NaNs and infinities in the ieee standard default */ /* manner. */ /* Arguments */ /* ========= */ /* JOBZ (input) CHARACTER*1 */ /* = 'N': Compute eigenvalues only; */ /* = 'V': Compute eigenvalues and eigenvectors. */ /* RANGE (input) CHARACTER*1 */ /* = 'A': all eigenvalues will be found. */ /* = 'V': all eigenvalues in the half-open interval (VL,VU] */ /* will be found. */ /* = 'I': the IL-th through IU-th eigenvalues will be found. */ /* ********* For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and */ /* ********* DSTEIN are called */ /* N (input) INTEGER */ /* The order of the matrix. N >= 0. */ /* D (input/output) DOUBLE PRECISION array, dimension (N) */ /* On entry, the n diagonal elements of the tridiagonal matrix */ /* A. */ /* On exit, D may be multiplied by a constant factor chosen */ /* to avoid over/underflow in computing the eigenvalues. */ /* E (input/output) DOUBLE PRECISION array, dimension (max(1,N-1)) */ /* On entry, the (n-1) subdiagonal elements of the tridiagonal */ /* matrix A in elements 1 to N-1 of E. */ /* On exit, E may be multiplied by a constant factor chosen */ /* to avoid over/underflow in computing the eigenvalues. */ /* VL (input) DOUBLE PRECISION */ /* VU (input) DOUBLE PRECISION */ /* If RANGE='V', the lower and upper bounds of the interval to */ /* be searched for eigenvalues. VL < VU. */ /* Not referenced if RANGE = 'A' or 'I'. */ /* IL (input) INTEGER */ /* IU (input) INTEGER */ /* If RANGE='I', the indices (in ascending order) of the */ /* smallest and largest eigenvalues to be returned. */ /* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */ /* Not referenced if RANGE = 'A' or 'V'. */ /* ABSTOL (input) DOUBLE PRECISION */ /* The absolute error tolerance for the eigenvalues. */ /* An approximate eigenvalue is accepted as converged */ /* when it is determined to lie in an interval [a,b] */ /* of width less than or equal to */ /* ABSTOL + EPS * max( |a|,|b| ) , */ /* where EPS is the machine precision. If ABSTOL is less than */ /* or equal to zero, then EPS*|T| will be used in its place, */ /* where |T| is the 1-norm of the tridiagonal matrix obtained */ /* by reducing A to tridiagonal form. */ /* See "Computing Small Singular Values of Bidiagonal Matrices */ /* with Guaranteed High Relative Accuracy," by Demmel and */ /* Kahan, LAPACK Working Note #3. */ /* If high relative accuracy is important, set ABSTOL to */ /* DLAMCH( 'Safe minimum' ). Doing so will guarantee that */ /* eigenvalues are computed to high relative accuracy when */ /* possible in future releases. The current code does not */ /* make any guarantees about high relative accuracy, but */ /* future releases will. See J. Barlow and J. Demmel, */ /* "Computing Accurate Eigensystems of Scaled Diagonally */ /* Dominant Matrices", LAPACK Working Note #7, for a discussion */ /* of which matrices define their eigenvalues to high relative */ /* accuracy. */ /* M (output) INTEGER */ /* The total number of eigenvalues found. 0 <= M <= N. */ /* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */ /* W (output) DOUBLE PRECISION array, dimension (N) */ /* The first M elements contain the selected eigenvalues in */ /* ascending order. */ /* Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) ) */ /* If JOBZ = 'V', then if INFO = 0, the first M columns of Z */ /* contain the orthonormal eigenvectors of the matrix A */ /* corresponding to the selected eigenvalues, with the i-th */ /* column of Z holding the eigenvector associated with W(i). */ /* Note: the user must ensure that at least max(1,M) columns are */ /* supplied in the array Z; if RANGE = 'V', the exact value of M */ /* is not known in advance and an upper bound must be used. */ /* LDZ (input) INTEGER */ /* The leading dimension of the array Z. LDZ >= 1, and if */ /* JOBZ = 'V', LDZ >= max(1,N). */ /* ISUPPZ (output) INTEGER array, dimension ( 2*max(1,M) ) */ /* The support of the eigenvectors in Z, i.e., the indices */ /* indicating the nonzero elements in Z. The i-th eigenvector */ /* is nonzero only in elements ISUPPZ( 2*i-1 ) through */ /* ISUPPZ( 2*i ). */ /* ********* Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1 */ /* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal (and */ /* minimal) LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. LWORK >= max(1,20*N). */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal sizes of the WORK and IWORK */ /* arrays, returns these values as the first entries of the WORK */ /* and IWORK arrays, and no error message related to LWORK or */ /* LIWORK is issued by XERBLA. */ /* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */ /* On exit, if INFO = 0, IWORK(1) returns the optimal (and */ /* minimal) LIWORK. */ /* LIWORK (input) INTEGER */ /* The dimension of the array IWORK. LIWORK >= max(1,10*N). */ /* If LIWORK = -1, then a workspace query is assumed; the */ /* routine only calculates the optimal sizes of the WORK and */ /* IWORK arrays, returns these values as the first entries of */ /* the WORK and IWORK arrays, and no error message related to */ /* LWORK or LIWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* > 0: Internal error */ /* Further Details */ /* =============== */ /* Based on contributions by */ /* Inderjit Dhillon, IBM Almaden, USA */ /* Osni Marques, LBNL/NERSC, USA */ /* Ken Stanley, Computer Science Division, University of */ /* California at Berkeley, USA */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --d__; --e; --w; z_dim1 = *ldz; z_offset = 1 + z_dim1; z__ -= z_offset; --isuppz; --work; --iwork; /* Function Body */ ieeeok = ilaenv_(&c__10, "DSTEVR", "N", &c__1, &c__2, &c__3, &c__4); wantz = lsame_(jobz, "V"); alleig = lsame_(range, "A"); valeig = lsame_(range, "V"); indeig = lsame_(range, "I"); lquery = *lwork == -1 || *liwork == -1; /* Computing MAX */ i__1 = 1, i__2 = *n * 20; lwmin = max(i__1,i__2); /* Computing MAX */ i__1 = 1, i__2 = *n * 10; liwmin = max(i__1,i__2); *info = 0; if (! (wantz || lsame_(jobz, "N"))) { *info = -1; } else if (! (alleig || valeig || indeig)) { *info = -2; } else if (*n < 0) { *info = -3; } else { if (valeig) { if (*n > 0 && *vu <= *vl) { *info = -7; } } else if (indeig) { if (*il < 1 || *il > max(1,*n)) { *info = -8; } else if (*iu < min(*n,*il) || *iu > *n) { *info = -9; } } } if (*info == 0) { if (*ldz < 1 || wantz && *ldz < *n) { *info = -14; } } if (*info == 0) { work[1] = (doublereal) lwmin; iwork[1] = liwmin; if (*lwork < lwmin && ! lquery) { *info = -17; } else if (*liwork < liwmin && ! lquery) { *info = -19; } } if (*info != 0) { i__1 = -(*info); xerbla_("DSTEVR", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ *m = 0; if (*n == 0) { return 0; } if (*n == 1) { if (alleig || indeig) { *m = 1; w[1] = d__[1]; } else { if (*vl < d__[1] && *vu >= d__[1]) { *m = 1; w[1] = d__[1]; } } if (wantz) { z__[z_dim1 + 1] = 1.; } return 0; } /* Get machine constants. */ safmin = dlamch_("Safe minimum"); eps = dlamch_("Precision"); smlnum = safmin / eps; bignum = 1. / smlnum; rmin = sqrt(smlnum); /* Computing MIN */ d__1 = sqrt(bignum), d__2 = 1. / sqrt(sqrt(safmin)); rmax = min(d__1,d__2); /* Scale matrix to allowable range, if necessary. */ iscale = 0; vll = *vl; vuu = *vu; tnrm = dlanst_("M", n, &d__[1], &e[1]); if (tnrm > 0. && tnrm < rmin) { iscale = 1; sigma = rmin / tnrm; } else if (tnrm > rmax) { iscale = 1; sigma = rmax / tnrm; } if (iscale == 1) { dscal_(n, &sigma, &d__[1], &c__1); i__1 = *n - 1; dscal_(&i__1, &sigma, &e[1], &c__1); if (valeig) { vll = *vl * sigma; vuu = *vu * sigma; } } /* Initialize indices into workspaces. Note: These indices are used only */ /* if DSTERF or DSTEMR fail. */ /* IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and */ /* stores the block indices of each of the M<=N eigenvalues. */ indibl = 1; /* IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and */ /* stores the starting and finishing indices of each block. */ indisp = indibl + *n; /* IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors */ /* that corresponding to eigenvectors that fail to converge in */ /* DSTEIN. This information is discarded; if any fail, the driver */ /* returns INFO > 0. */ indifl = indisp + *n; /* INDIWO is the offset of the remaining integer workspace. */ indiwo = indisp + *n; /* If all eigenvalues are desired, then */ /* call DSTERF or DSTEMR. If this fails for some eigenvalue, then */ /* try DSTEBZ. */ test = FALSE_; if (indeig) { if (*il == 1 && *iu == *n) { test = TRUE_; } } if ((alleig || test) && ieeeok == 1) { i__1 = *n - 1; dcopy_(&i__1, &e[1], &c__1, &work[1], &c__1); if (! wantz) { dcopy_(n, &d__[1], &c__1, &w[1], &c__1); dsterf_(n, &w[1], &work[1], info); } else { dcopy_(n, &d__[1], &c__1, &work[*n + 1], &c__1); if (*abstol <= *n * 2. * eps) { tryrac = TRUE_; } else { tryrac = FALSE_; } i__1 = *lwork - (*n << 1); dstemr_(jobz, "A", n, &work[*n + 1], &work[1], vl, vu, il, iu, m, &w[1], &z__[z_offset], ldz, n, &isuppz[1], &tryrac, &work[ (*n << 1) + 1], &i__1, &iwork[1], liwork, info); } if (*info == 0) { *m = *n; goto L10; } *info = 0; } /* Otherwise, call DSTEBZ and, if eigenvectors are desired, DSTEIN. */ if (wantz) { *(unsigned char *)order = 'B'; } else { *(unsigned char *)order = 'E'; } dstebz_(range, order, n, &vll, &vuu, il, iu, abstol, &d__[1], &e[1], m, & nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[1], &iwork[ indiwo], info); if (wantz) { dstein_(n, &d__[1], &e[1], m, &w[1], &iwork[indibl], &iwork[indisp], & z__[z_offset], ldz, &work[1], &iwork[indiwo], &iwork[indifl], info); } /* If matrix was scaled, then rescale eigenvalues appropriately. */ L10: if (iscale == 1) { if (*info == 0) { imax = *m; } else { imax = *info - 1; } d__1 = 1. / sigma; dscal_(&imax, &d__1, &w[1], &c__1); } /* If eigenvalues are not in order, then sort them, along with */ /* eigenvectors. */ if (wantz) { i__1 = *m - 1; for (j = 1; j <= i__1; ++j) { i__ = 0; tmp1 = w[j]; i__2 = *m; for (jj = j + 1; jj <= i__2; ++jj) { if (w[jj] < tmp1) { i__ = jj; tmp1 = w[jj]; } /* L20: */ } if (i__ != 0) { itmp1 = iwork[i__]; w[i__] = w[j]; iwork[i__] = iwork[j]; w[j] = tmp1; iwork[j] = itmp1; dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], &c__1); } /* L30: */ } } /* Causes problems with tests 19 & 20: */ /* IF (wantz .and. INDEIG ) Z( 1,1) = Z(1,1) / 1.002 + .002 */ work[1] = (doublereal) lwmin; iwork[1] = liwmin; return 0; /* End of DSTEVR */ } /* dstevr_ */