/* dorgtr.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; /* Subroutine */ int dorgtr_(char *uplo, integer *n, doublereal *a, integer * lda, doublereal *tau, doublereal *work, integer *lwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; /* Local variables */ integer i__, j, nb; extern logical lsame_(char *, char *); integer iinfo; logical upper; extern /* Subroutine */ int xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); extern /* Subroutine */ int dorgql_(integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *), dorgqr_(integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *); integer lwkopt; logical lquery; /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DORGTR generates a real orthogonal matrix Q which is defined as the */ /* product of n-1 elementary reflectors of order N, as returned by */ /* DSYTRD: */ /* if UPLO = 'U', Q = H(n-1) . . . H(2) H(1), */ /* if UPLO = 'L', Q = H(1) H(2) . . . H(n-1). */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangle of A contains elementary reflectors */ /* from DSYTRD; */ /* = 'L': Lower triangle of A contains elementary reflectors */ /* from DSYTRD. */ /* N (input) INTEGER */ /* The order of the matrix Q. N >= 0. */ /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */ /* On entry, the vectors which define the elementary reflectors, */ /* as returned by DSYTRD. */ /* On exit, the N-by-N orthogonal matrix Q. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* TAU (input) DOUBLE PRECISION array, dimension (N-1) */ /* TAU(i) must contain the scalar factor of the elementary */ /* reflector H(i), as returned by DSYTRD. */ /* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. LWORK >= max(1,N-1). */ /* For optimum performance LWORK >= (N-1)*NB, where NB is */ /* the optimal blocksize. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; /* Function Body */ *info = 0; lquery = *lwork == -1; upper = lsame_(uplo, "U"); if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*n)) { *info = -4; } else /* if(complicated condition) */ { /* Computing MAX */ i__1 = 1, i__2 = *n - 1; if (*lwork < max(i__1,i__2) && ! lquery) { *info = -7; } } if (*info == 0) { if (upper) { i__1 = *n - 1; i__2 = *n - 1; i__3 = *n - 1; nb = ilaenv_(&c__1, "DORGQL", " ", &i__1, &i__2, &i__3, &c_n1); } else { i__1 = *n - 1; i__2 = *n - 1; i__3 = *n - 1; nb = ilaenv_(&c__1, "DORGQR", " ", &i__1, &i__2, &i__3, &c_n1); } /* Computing MAX */ i__1 = 1, i__2 = *n - 1; lwkopt = max(i__1,i__2) * nb; work[1] = (doublereal) lwkopt; } if (*info != 0) { i__1 = -(*info); xerbla_("DORGTR", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { work[1] = 1.; return 0; } if (upper) { /* Q was determined by a call to DSYTRD with UPLO = 'U' */ /* Shift the vectors which define the elementary reflectors one */ /* column to the left, and set the last row and column of Q to */ /* those of the unit matrix */ i__1 = *n - 1; for (j = 1; j <= i__1; ++j) { i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { a[i__ + j * a_dim1] = a[i__ + (j + 1) * a_dim1]; /* L10: */ } a[*n + j * a_dim1] = 0.; /* L20: */ } i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { a[i__ + *n * a_dim1] = 0.; /* L30: */ } a[*n + *n * a_dim1] = 1.; /* Generate Q(1:n-1,1:n-1) */ i__1 = *n - 1; i__2 = *n - 1; i__3 = *n - 1; dorgql_(&i__1, &i__2, &i__3, &a[a_offset], lda, &tau[1], &work[1], lwork, &iinfo); } else { /* Q was determined by a call to DSYTRD with UPLO = 'L'. */ /* Shift the vectors which define the elementary reflectors one */ /* column to the right, and set the first row and column of Q to */ /* those of the unit matrix */ for (j = *n; j >= 2; --j) { a[j * a_dim1 + 1] = 0.; i__1 = *n; for (i__ = j + 1; i__ <= i__1; ++i__) { a[i__ + j * a_dim1] = a[i__ + (j - 1) * a_dim1]; /* L40: */ } /* L50: */ } a[a_dim1 + 1] = 1.; i__1 = *n; for (i__ = 2; i__ <= i__1; ++i__) { a[i__ + a_dim1] = 0.; /* L60: */ } if (*n > 1) { /* Generate Q(2:n,2:n) */ i__1 = *n - 1; i__2 = *n - 1; i__3 = *n - 1; dorgqr_(&i__1, &i__2, &i__3, &a[(a_dim1 << 1) + 2], lda, &tau[1], &work[1], lwork, &iinfo); } } work[1] = (doublereal) lwkopt; return 0; /* End of DORGTR */ } /* dorgtr_ */