/* dlatzm.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; static doublereal c_b5 = 1.; /* Subroutine */ int dlatzm_(char *side, integer *m, integer *n, doublereal * v, integer *incv, doublereal *tau, doublereal *c1, doublereal *c2, integer *ldc, doublereal *work) { /* System generated locals */ integer c1_dim1, c1_offset, c2_dim1, c2_offset, i__1; doublereal d__1; /* Local variables */ extern /* Subroutine */ int dger_(integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *); extern logical lsame_(char *, char *); extern /* Subroutine */ int dgemv_(char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *), dcopy_(integer *, doublereal *, integer *, doublereal *, integer *), daxpy_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *) ; /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* This routine is deprecated and has been replaced by routine DORMRZ. */ /* DLATZM applies a Householder matrix generated by DTZRQF to a matrix. */ /* Let P = I - tau*u*u', u = ( 1 ), */ /* ( v ) */ /* where v is an (m-1) vector if SIDE = 'L', or a (n-1) vector if */ /* SIDE = 'R'. */ /* If SIDE equals 'L', let */ /* C = [ C1 ] 1 */ /* [ C2 ] m-1 */ /* n */ /* Then C is overwritten by P*C. */ /* If SIDE equals 'R', let */ /* C = [ C1, C2 ] m */ /* 1 n-1 */ /* Then C is overwritten by C*P. */ /* Arguments */ /* ========= */ /* SIDE (input) CHARACTER*1 */ /* = 'L': form P * C */ /* = 'R': form C * P */ /* M (input) INTEGER */ /* The number of rows of the matrix C. */ /* N (input) INTEGER */ /* The number of columns of the matrix C. */ /* V (input) DOUBLE PRECISION array, dimension */ /* (1 + (M-1)*abs(INCV)) if SIDE = 'L' */ /* (1 + (N-1)*abs(INCV)) if SIDE = 'R' */ /* The vector v in the representation of P. V is not used */ /* if TAU = 0. */ /* INCV (input) INTEGER */ /* The increment between elements of v. INCV <> 0 */ /* TAU (input) DOUBLE PRECISION */ /* The value tau in the representation of P. */ /* C1 (input/output) DOUBLE PRECISION array, dimension */ /* (LDC,N) if SIDE = 'L' */ /* (M,1) if SIDE = 'R' */ /* On entry, the n-vector C1 if SIDE = 'L', or the m-vector C1 */ /* if SIDE = 'R'. */ /* On exit, the first row of P*C if SIDE = 'L', or the first */ /* column of C*P if SIDE = 'R'. */ /* C2 (input/output) DOUBLE PRECISION array, dimension */ /* (LDC, N) if SIDE = 'L' */ /* (LDC, N-1) if SIDE = 'R' */ /* On entry, the (m - 1) x n matrix C2 if SIDE = 'L', or the */ /* m x (n - 1) matrix C2 if SIDE = 'R'. */ /* On exit, rows 2:m of P*C if SIDE = 'L', or columns 2:m of C*P */ /* if SIDE = 'R'. */ /* LDC (input) INTEGER */ /* The leading dimension of the arrays C1 and C2. LDC >= (1,M). */ /* WORK (workspace) DOUBLE PRECISION array, dimension */ /* (N) if SIDE = 'L' */ /* (M) if SIDE = 'R' */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ --v; c2_dim1 = *ldc; c2_offset = 1 + c2_dim1; c2 -= c2_offset; c1_dim1 = *ldc; c1_offset = 1 + c1_dim1; c1 -= c1_offset; --work; /* Function Body */ if (min(*m,*n) == 0 || *tau == 0.) { return 0; } if (lsame_(side, "L")) { /* w := C1 + v' * C2 */ dcopy_(n, &c1[c1_offset], ldc, &work[1], &c__1); i__1 = *m - 1; dgemv_("Transpose", &i__1, n, &c_b5, &c2[c2_offset], ldc, &v[1], incv, &c_b5, &work[1], &c__1); /* [ C1 ] := [ C1 ] - tau* [ 1 ] * w' */ /* [ C2 ] [ C2 ] [ v ] */ d__1 = -(*tau); daxpy_(n, &d__1, &work[1], &c__1, &c1[c1_offset], ldc); i__1 = *m - 1; d__1 = -(*tau); dger_(&i__1, n, &d__1, &v[1], incv, &work[1], &c__1, &c2[c2_offset], ldc); } else if (lsame_(side, "R")) { /* w := C1 + C2 * v */ dcopy_(m, &c1[c1_offset], &c__1, &work[1], &c__1); i__1 = *n - 1; dgemv_("No transpose", m, &i__1, &c_b5, &c2[c2_offset], ldc, &v[1], incv, &c_b5, &work[1], &c__1); /* [ C1, C2 ] := [ C1, C2 ] - tau* w * [ 1 , v'] */ d__1 = -(*tau); daxpy_(m, &d__1, &work[1], &c__1, &c1[c1_offset], &c__1); i__1 = *n - 1; d__1 = -(*tau); dger_(m, &i__1, &d__1, &work[1], &c__1, &v[1], incv, &c2[c2_offset], ldc); } return 0; /* End of DLATZM */ } /* dlatzm_ */