/* dlat2s.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Subroutine */ int dlat2s_(char *uplo, integer *n, doublereal *a, integer * lda, real *sa, integer *ldsa, integer *info) { /* System generated locals */ integer sa_dim1, sa_offset, a_dim1, a_offset, i__1, i__2; /* Local variables */ integer i__, j; doublereal rmax; extern logical lsame_(char *, char *); logical upper; extern doublereal slamch_(char *); /* -- LAPACK PROTOTYPE auxiliary routine (version 3.1.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* May 2007 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DLAT2S converts a DOUBLE PRECISION triangular matrix, SA, to a SINGLE */ /* PRECISION triangular matrix, A. */ /* RMAX is the overflow for the SINGLE PRECISION arithmetic */ /* DLAS2S checks that all the entries of A are between -RMAX and */ /* RMAX. If not the convertion is aborted and a flag is raised. */ /* This is an auxiliary routine so there is no argument checking. */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER*1 */ /* = 'U': A is upper triangular; */ /* = 'L': A is lower triangular. */ /* N (input) INTEGER */ /* The number of rows and columns of the matrix A. N >= 0. */ /* A (input) DOUBLE PRECISION array, dimension (LDA,N) */ /* On entry, the N-by-N triangular coefficient matrix A. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* SA (output) REAL array, dimension (LDSA,N) */ /* Only the UPLO part of SA is referenced. On exit, if INFO=0, */ /* the N-by-N coefficient matrix SA; if INFO>0, the content of */ /* the UPLO part of SA is unspecified. */ /* LDSA (input) INTEGER */ /* The leading dimension of the array SA. LDSA >= max(1,M). */ /* INFO (output) INTEGER */ /* = 0: successful exit. */ /* = 1: an entry of the matrix A is greater than the SINGLE */ /* PRECISION overflow threshold, in this case, the content */ /* of the UPLO part of SA in exit is unspecified. */ /* ========= */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; sa_dim1 = *ldsa; sa_offset = 1 + sa_dim1; sa -= sa_offset; /* Function Body */ rmax = slamch_("O"); upper = lsame_(uplo, "U"); if (upper) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j; for (i__ = 1; i__ <= i__2; ++i__) { if (a[i__ + j * a_dim1] < -rmax || a[i__ + j * a_dim1] > rmax) { *info = 1; goto L50; } sa[i__ + j * sa_dim1] = a[i__ + j * a_dim1]; /* L10: */ } /* L20: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = j; i__ <= i__2; ++i__) { if (a[i__ + j * a_dim1] < -rmax || a[i__ + j * a_dim1] > rmax) { *info = 1; goto L50; } sa[i__ + j * sa_dim1] = a[i__ + j * a_dim1]; /* L30: */ } /* L40: */ } } L50: return 0; /* End of DLAT2S */ } /* dlat2s_ */