/* dlags2.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Subroutine */ int dlags2_(logical *upper, doublereal *a1, doublereal *a2, doublereal *a3, doublereal *b1, doublereal *b2, doublereal *b3, doublereal *csu, doublereal *snu, doublereal *csv, doublereal *snv, doublereal *csq, doublereal *snq) { /* System generated locals */ doublereal d__1; /* Local variables */ doublereal a, b, c__, d__, r__, s1, s2, ua11, ua12, ua21, ua22, vb11, vb12, vb21, vb22, csl, csr, snl, snr, aua11, aua12, aua21, aua22, avb11, avb12, avb21, avb22, ua11r, ua22r, vb11r, vb22r; extern /* Subroutine */ int dlasv2_(doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *), dlartg_(doublereal *, doublereal *, doublereal *, doublereal *, doublereal *); /* -- LAPACK auxiliary routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DLAGS2 computes 2-by-2 orthogonal matrices U, V and Q, such */ /* that if ( UPPER ) then */ /* U'*A*Q = U'*( A1 A2 )*Q = ( x 0 ) */ /* ( 0 A3 ) ( x x ) */ /* and */ /* V'*B*Q = V'*( B1 B2 )*Q = ( x 0 ) */ /* ( 0 B3 ) ( x x ) */ /* or if ( .NOT.UPPER ) then */ /* U'*A*Q = U'*( A1 0 )*Q = ( x x ) */ /* ( A2 A3 ) ( 0 x ) */ /* and */ /* V'*B*Q = V'*( B1 0 )*Q = ( x x ) */ /* ( B2 B3 ) ( 0 x ) */ /* The rows of the transformed A and B are parallel, where */ /* U = ( CSU SNU ), V = ( CSV SNV ), Q = ( CSQ SNQ ) */ /* ( -SNU CSU ) ( -SNV CSV ) ( -SNQ CSQ ) */ /* Z' denotes the transpose of Z. */ /* Arguments */ /* ========= */ /* UPPER (input) LOGICAL */ /* = .TRUE.: the input matrices A and B are upper triangular. */ /* = .FALSE.: the input matrices A and B are lower triangular. */ /* A1 (input) DOUBLE PRECISION */ /* A2 (input) DOUBLE PRECISION */ /* A3 (input) DOUBLE PRECISION */ /* On entry, A1, A2 and A3 are elements of the input 2-by-2 */ /* upper (lower) triangular matrix A. */ /* B1 (input) DOUBLE PRECISION */ /* B2 (input) DOUBLE PRECISION */ /* B3 (input) DOUBLE PRECISION */ /* On entry, B1, B2 and B3 are elements of the input 2-by-2 */ /* upper (lower) triangular matrix B. */ /* CSU (output) DOUBLE PRECISION */ /* SNU (output) DOUBLE PRECISION */ /* The desired orthogonal matrix U. */ /* CSV (output) DOUBLE PRECISION */ /* SNV (output) DOUBLE PRECISION */ /* The desired orthogonal matrix V. */ /* CSQ (output) DOUBLE PRECISION */ /* SNQ (output) DOUBLE PRECISION */ /* The desired orthogonal matrix Q. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ if (*upper) { /* Input matrices A and B are upper triangular matrices */ /* Form matrix C = A*adj(B) = ( a b ) */ /* ( 0 d ) */ a = *a1 * *b3; d__ = *a3 * *b1; b = *a2 * *b1 - *a1 * *b2; /* The SVD of real 2-by-2 triangular C */ /* ( CSL -SNL )*( A B )*( CSR SNR ) = ( R 0 ) */ /* ( SNL CSL ) ( 0 D ) ( -SNR CSR ) ( 0 T ) */ dlasv2_(&a, &b, &d__, &s1, &s2, &snr, &csr, &snl, &csl); if (abs(csl) >= abs(snl) || abs(csr) >= abs(snr)) { /* Compute the (1,1) and (1,2) elements of U'*A and V'*B, */ /* and (1,2) element of |U|'*|A| and |V|'*|B|. */ ua11r = csl * *a1; ua12 = csl * *a2 + snl * *a3; vb11r = csr * *b1; vb12 = csr * *b2 + snr * *b3; aua12 = abs(csl) * abs(*a2) + abs(snl) * abs(*a3); avb12 = abs(csr) * abs(*b2) + abs(snr) * abs(*b3); /* zero (1,2) elements of U'*A and V'*B */ if (abs(ua11r) + abs(ua12) != 0.) { if (aua12 / (abs(ua11r) + abs(ua12)) <= avb12 / (abs(vb11r) + abs(vb12))) { d__1 = -ua11r; dlartg_(&d__1, &ua12, csq, snq, &r__); } else { d__1 = -vb11r; dlartg_(&d__1, &vb12, csq, snq, &r__); } } else { d__1 = -vb11r; dlartg_(&d__1, &vb12, csq, snq, &r__); } *csu = csl; *snu = -snl; *csv = csr; *snv = -snr; } else { /* Compute the (2,1) and (2,2) elements of U'*A and V'*B, */ /* and (2,2) element of |U|'*|A| and |V|'*|B|. */ ua21 = -snl * *a1; ua22 = -snl * *a2 + csl * *a3; vb21 = -snr * *b1; vb22 = -snr * *b2 + csr * *b3; aua22 = abs(snl) * abs(*a2) + abs(csl) * abs(*a3); avb22 = abs(snr) * abs(*b2) + abs(csr) * abs(*b3); /* zero (2,2) elements of U'*A and V'*B, and then swap. */ if (abs(ua21) + abs(ua22) != 0.) { if (aua22 / (abs(ua21) + abs(ua22)) <= avb22 / (abs(vb21) + abs(vb22))) { d__1 = -ua21; dlartg_(&d__1, &ua22, csq, snq, &r__); } else { d__1 = -vb21; dlartg_(&d__1, &vb22, csq, snq, &r__); } } else { d__1 = -vb21; dlartg_(&d__1, &vb22, csq, snq, &r__); } *csu = snl; *snu = csl; *csv = snr; *snv = csr; } } else { /* Input matrices A and B are lower triangular matrices */ /* Form matrix C = A*adj(B) = ( a 0 ) */ /* ( c d ) */ a = *a1 * *b3; d__ = *a3 * *b1; c__ = *a2 * *b3 - *a3 * *b2; /* The SVD of real 2-by-2 triangular C */ /* ( CSL -SNL )*( A 0 )*( CSR SNR ) = ( R 0 ) */ /* ( SNL CSL ) ( C D ) ( -SNR CSR ) ( 0 T ) */ dlasv2_(&a, &c__, &d__, &s1, &s2, &snr, &csr, &snl, &csl); if (abs(csr) >= abs(snr) || abs(csl) >= abs(snl)) { /* Compute the (2,1) and (2,2) elements of U'*A and V'*B, */ /* and (2,1) element of |U|'*|A| and |V|'*|B|. */ ua21 = -snr * *a1 + csr * *a2; ua22r = csr * *a3; vb21 = -snl * *b1 + csl * *b2; vb22r = csl * *b3; aua21 = abs(snr) * abs(*a1) + abs(csr) * abs(*a2); avb21 = abs(snl) * abs(*b1) + abs(csl) * abs(*b2); /* zero (2,1) elements of U'*A and V'*B. */ if (abs(ua21) + abs(ua22r) != 0.) { if (aua21 / (abs(ua21) + abs(ua22r)) <= avb21 / (abs(vb21) + abs(vb22r))) { dlartg_(&ua22r, &ua21, csq, snq, &r__); } else { dlartg_(&vb22r, &vb21, csq, snq, &r__); } } else { dlartg_(&vb22r, &vb21, csq, snq, &r__); } *csu = csr; *snu = -snr; *csv = csl; *snv = -snl; } else { /* Compute the (1,1) and (1,2) elements of U'*A and V'*B, */ /* and (1,1) element of |U|'*|A| and |V|'*|B|. */ ua11 = csr * *a1 + snr * *a2; ua12 = snr * *a3; vb11 = csl * *b1 + snl * *b2; vb12 = snl * *b3; aua11 = abs(csr) * abs(*a1) + abs(snr) * abs(*a2); avb11 = abs(csl) * abs(*b1) + abs(snl) * abs(*b2); /* zero (1,1) elements of U'*A and V'*B, and then swap. */ if (abs(ua11) + abs(ua12) != 0.) { if (aua11 / (abs(ua11) + abs(ua12)) <= avb11 / (abs(vb11) + abs(vb12))) { dlartg_(&ua12, &ua11, csq, snq, &r__); } else { dlartg_(&vb12, &vb11, csq, snq, &r__); } } else { dlartg_(&vb12, &vb11, csq, snq, &r__); } *csu = snr; *snu = csr; *csv = snl; *snv = csl; } } return 0; /* End of DLAGS2 */ } /* dlags2_ */