/* dlacon.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; static doublereal c_b11 = 1.; /* Subroutine */ int dlacon_(integer *n, doublereal *v, doublereal *x, integer *isgn, doublereal *est, integer *kase) { /* System generated locals */ integer i__1; doublereal d__1; /* Builtin functions */ double d_sign(doublereal *, doublereal *); integer i_dnnt(doublereal *); /* Local variables */ static integer i__, j, iter; static doublereal temp; static integer jump; extern doublereal dasum_(integer *, doublereal *, integer *); static integer jlast; extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, doublereal *, integer *); extern integer idamax_(integer *, doublereal *, integer *); static doublereal altsgn, estold; /* -- LAPACK auxiliary routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DLACON estimates the 1-norm of a square, real matrix A. */ /* Reverse communication is used for evaluating matrix-vector products. */ /* Arguments */ /* ========= */ /* N (input) INTEGER */ /* The order of the matrix. N >= 1. */ /* V (workspace) DOUBLE PRECISION array, dimension (N) */ /* On the final return, V = A*W, where EST = norm(V)/norm(W) */ /* (W is not returned). */ /* X (input/output) DOUBLE PRECISION array, dimension (N) */ /* On an intermediate return, X should be overwritten by */ /* A * X, if KASE=1, */ /* A' * X, if KASE=2, */ /* and DLACON must be re-called with all the other parameters */ /* unchanged. */ /* ISGN (workspace) INTEGER array, dimension (N) */ /* EST (input/output) DOUBLE PRECISION */ /* On entry with KASE = 1 or 2 and JUMP = 3, EST should be */ /* unchanged from the previous call to DLACON. */ /* On exit, EST is an estimate (a lower bound) for norm(A). */ /* KASE (input/output) INTEGER */ /* On the initial call to DLACON, KASE should be 0. */ /* On an intermediate return, KASE will be 1 or 2, indicating */ /* whether X should be overwritten by A * X or A' * X. */ /* On the final return from DLACON, KASE will again be 0. */ /* Further Details */ /* ======= ======= */ /* Contributed by Nick Higham, University of Manchester. */ /* Originally named SONEST, dated March 16, 1988. */ /* Reference: N.J. Higham, "FORTRAN codes for estimating the one-norm of */ /* a real or complex matrix, with applications to condition estimation", */ /* ACM Trans. Math. Soft., vol. 14, no. 4, pp. 381-396, December 1988. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Save statement .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ --isgn; --x; --v; /* Function Body */ if (*kase == 0) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { x[i__] = 1. / (doublereal) (*n); /* L10: */ } *kase = 1; jump = 1; return 0; } switch (jump) { case 1: goto L20; case 2: goto L40; case 3: goto L70; case 4: goto L110; case 5: goto L140; } /* ................ ENTRY (JUMP = 1) */ /* FIRST ITERATION. X HAS BEEN OVERWRITTEN BY A*X. */ L20: if (*n == 1) { v[1] = x[1]; *est = abs(v[1]); /* ... QUIT */ goto L150; } *est = dasum_(n, &x[1], &c__1); i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { x[i__] = d_sign(&c_b11, &x[i__]); isgn[i__] = i_dnnt(&x[i__]); /* L30: */ } *kase = 2; jump = 2; return 0; /* ................ ENTRY (JUMP = 2) */ /* FIRST ITERATION. X HAS BEEN OVERWRITTEN BY TRANSPOSE(A)*X. */ L40: j = idamax_(n, &x[1], &c__1); iter = 2; /* MAIN LOOP - ITERATIONS 2,3,...,ITMAX. */ L50: i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { x[i__] = 0.; /* L60: */ } x[j] = 1.; *kase = 1; jump = 3; return 0; /* ................ ENTRY (JUMP = 3) */ /* X HAS BEEN OVERWRITTEN BY A*X. */ L70: dcopy_(n, &x[1], &c__1, &v[1], &c__1); estold = *est; *est = dasum_(n, &v[1], &c__1); i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { d__1 = d_sign(&c_b11, &x[i__]); if (i_dnnt(&d__1) != isgn[i__]) { goto L90; } /* L80: */ } /* REPEATED SIGN VECTOR DETECTED, HENCE ALGORITHM HAS CONVERGED. */ goto L120; L90: /* TEST FOR CYCLING. */ if (*est <= estold) { goto L120; } i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { x[i__] = d_sign(&c_b11, &x[i__]); isgn[i__] = i_dnnt(&x[i__]); /* L100: */ } *kase = 2; jump = 4; return 0; /* ................ ENTRY (JUMP = 4) */ /* X HAS BEEN OVERWRITTEN BY TRANSPOSE(A)*X. */ L110: jlast = j; j = idamax_(n, &x[1], &c__1); if (x[jlast] != (d__1 = x[j], abs(d__1)) && iter < 5) { ++iter; goto L50; } /* ITERATION COMPLETE. FINAL STAGE. */ L120: altsgn = 1.; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { x[i__] = altsgn * ((doublereal) (i__ - 1) / (doublereal) (*n - 1) + 1.); altsgn = -altsgn; /* L130: */ } *kase = 1; jump = 5; return 0; /* ................ ENTRY (JUMP = 5) */ /* X HAS BEEN OVERWRITTEN BY A*X. */ L140: temp = dasum_(n, &x[1], &c__1) / (doublereal) (*n * 3) * 2.; if (temp > *est) { dcopy_(n, &x[1], &c__1, &v[1], &c__1); *est = temp; } L150: *kase = 0; return 0; /* End of DLACON */ } /* dlacon_ */