/* dla_gercond.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; doublereal dla_gercond__(char *trans, integer *n, doublereal *a, integer *lda, doublereal *af, integer *ldaf, integer *ipiv, integer *cmode, doublereal *c__, integer *info, doublereal *work, integer *iwork, ftnlen trans_len) { /* System generated locals */ integer a_dim1, a_offset, af_dim1, af_offset, i__1, i__2; doublereal ret_val, d__1; /* Local variables */ integer i__, j; doublereal tmp; integer kase; extern logical lsame_(char *, char *); integer isave[3]; extern /* Subroutine */ int dlacn2_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *), xerbla_(char *, integer *); doublereal ainvnm; extern /* Subroutine */ int dgetrs_(char *, integer *, integer *, doublereal *, integer *, integer *, doublereal *, integer *, integer *); logical notrans; /* -- LAPACK routine (version 3.2.1) -- */ /* -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */ /* -- Jason Riedy of Univ. of California Berkeley. -- */ /* -- April 2009 -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley and NAG Ltd. -- */ /* .. */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DLA_GERCOND estimates the Skeel condition number of op(A) * op2(C) */ /* where op2 is determined by CMODE as follows */ /* CMODE = 1 op2(C) = C */ /* CMODE = 0 op2(C) = I */ /* CMODE = -1 op2(C) = inv(C) */ /* The Skeel condition number cond(A) = norminf( |inv(A)||A| ) */ /* is computed by computing scaling factors R such that */ /* diag(R)*A*op2(C) is row equilibrated and computing the standard */ /* infinity-norm condition number. */ /* Arguments */ /* ========== */ /* TRANS (input) CHARACTER*1 */ /* Specifies the form of the system of equations: */ /* = 'N': A * X = B (No transpose) */ /* = 'T': A**T * X = B (Transpose) */ /* = 'C': A**H * X = B (Conjugate Transpose = Transpose) */ /* N (input) INTEGER */ /* The number of linear equations, i.e., the order of the */ /* matrix A. N >= 0. */ /* A (input) DOUBLE PRECISION array, dimension (LDA,N) */ /* On entry, the N-by-N matrix A. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* AF (input) DOUBLE PRECISION array, dimension (LDAF,N) */ /* The factors L and U from the factorization */ /* A = P*L*U as computed by DGETRF. */ /* LDAF (input) INTEGER */ /* The leading dimension of the array AF. LDAF >= max(1,N). */ /* IPIV (input) INTEGER array, dimension (N) */ /* The pivot indices from the factorization A = P*L*U */ /* as computed by DGETRF; row i of the matrix was interchanged */ /* with row IPIV(i). */ /* CMODE (input) INTEGER */ /* Determines op2(C) in the formula op(A) * op2(C) as follows: */ /* CMODE = 1 op2(C) = C */ /* CMODE = 0 op2(C) = I */ /* CMODE = -1 op2(C) = inv(C) */ /* C (input) DOUBLE PRECISION array, dimension (N) */ /* The vector C in the formula op(A) * op2(C). */ /* INFO (output) INTEGER */ /* = 0: Successful exit. */ /* i > 0: The ith argument is invalid. */ /* WORK (input) DOUBLE PRECISION array, dimension (3*N). */ /* Workspace. */ /* IWORK (input) INTEGER array, dimension (N). */ /* Workspace. */ /* ===================================================================== */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; af_dim1 = *ldaf; af_offset = 1 + af_dim1; af -= af_offset; --ipiv; --c__; --work; --iwork; /* Function Body */ ret_val = 0.; *info = 0; notrans = lsame_(trans, "N"); if (! notrans && ! lsame_(trans, "T") && ! lsame_( trans, "C")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*n)) { *info = -4; } else if (*ldaf < max(1,*n)) { *info = -6; } if (*info != 0) { i__1 = -(*info); xerbla_("DLA_GERCOND", &i__1); return ret_val; } if (*n == 0) { ret_val = 1.; return ret_val; } /* Compute the equilibration matrix R such that */ /* inv(R)*A*C has unit 1-norm. */ if (notrans) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { tmp = 0.; if (*cmode == 1) { i__2 = *n; for (j = 1; j <= i__2; ++j) { tmp += (d__1 = a[i__ + j * a_dim1] * c__[j], abs(d__1)); } } else if (*cmode == 0) { i__2 = *n; for (j = 1; j <= i__2; ++j) { tmp += (d__1 = a[i__ + j * a_dim1], abs(d__1)); } } else { i__2 = *n; for (j = 1; j <= i__2; ++j) { tmp += (d__1 = a[i__ + j * a_dim1] / c__[j], abs(d__1)); } } work[(*n << 1) + i__] = tmp; } } else { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { tmp = 0.; if (*cmode == 1) { i__2 = *n; for (j = 1; j <= i__2; ++j) { tmp += (d__1 = a[j + i__ * a_dim1] * c__[j], abs(d__1)); } } else if (*cmode == 0) { i__2 = *n; for (j = 1; j <= i__2; ++j) { tmp += (d__1 = a[j + i__ * a_dim1], abs(d__1)); } } else { i__2 = *n; for (j = 1; j <= i__2; ++j) { tmp += (d__1 = a[j + i__ * a_dim1] / c__[j], abs(d__1)); } } work[(*n << 1) + i__] = tmp; } } /* Estimate the norm of inv(op(A)). */ ainvnm = 0.; kase = 0; L10: dlacn2_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase, isave); if (kase != 0) { if (kase == 2) { /* Multiply by R. */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { work[i__] *= work[(*n << 1) + i__]; } if (notrans) { dgetrs_("No transpose", n, &c__1, &af[af_offset], ldaf, &ipiv[ 1], &work[1], n, info); } else { dgetrs_("Transpose", n, &c__1, &af[af_offset], ldaf, &ipiv[1], &work[1], n, info); } /* Multiply by inv(C). */ if (*cmode == 1) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { work[i__] /= c__[i__]; } } else if (*cmode == -1) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { work[i__] *= c__[i__]; } } } else { /* Multiply by inv(C'). */ if (*cmode == 1) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { work[i__] /= c__[i__]; } } else if (*cmode == -1) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { work[i__] *= c__[i__]; } } if (notrans) { dgetrs_("Transpose", n, &c__1, &af[af_offset], ldaf, &ipiv[1], &work[1], n, info); } else { dgetrs_("No transpose", n, &c__1, &af[af_offset], ldaf, &ipiv[ 1], &work[1], n, info); } /* Multiply by R. */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { work[i__] *= work[(*n << 1) + i__]; } } goto L10; } /* Compute the estimate of the reciprocal condition number. */ if (ainvnm != 0.) { ret_val = 1. / ainvnm; } return ret_val; } /* dla_gercond__ */