/* cunmhr.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; static integer c__2 = 2; /* Subroutine */ int cunmhr_(char *side, char *trans, integer *m, integer *n, integer *ilo, integer *ihi, complex *a, integer *lda, complex *tau, complex *c__, integer *ldc, complex *work, integer *lwork, integer * info) { /* System generated locals */ address a__1[2]; integer a_dim1, a_offset, c_dim1, c_offset, i__1[2], i__2; char ch__1[2]; /* Builtin functions */ /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen); /* Local variables */ integer i1, i2, nb, mi, nh, ni, nq, nw; logical left; extern logical lsame_(char *, char *); integer iinfo; extern /* Subroutine */ int xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); extern /* Subroutine */ int cunmqr_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *); integer lwkopt; logical lquery; /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CUNMHR overwrites the general complex M-by-N matrix C with */ /* SIDE = 'L' SIDE = 'R' */ /* TRANS = 'N': Q * C C * Q */ /* TRANS = 'C': Q**H * C C * Q**H */ /* where Q is a complex unitary matrix of order nq, with nq = m if */ /* SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of */ /* IHI-ILO elementary reflectors, as returned by CGEHRD: */ /* Q = H(ilo) H(ilo+1) . . . H(ihi-1). */ /* Arguments */ /* ========= */ /* SIDE (input) CHARACTER*1 */ /* = 'L': apply Q or Q**H from the Left; */ /* = 'R': apply Q or Q**H from the Right. */ /* TRANS (input) CHARACTER*1 */ /* = 'N': apply Q (No transpose) */ /* = 'C': apply Q**H (Conjugate transpose) */ /* M (input) INTEGER */ /* The number of rows of the matrix C. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix C. N >= 0. */ /* ILO (input) INTEGER */ /* IHI (input) INTEGER */ /* ILO and IHI must have the same values as in the previous call */ /* of CGEHRD. Q is equal to the unit matrix except in the */ /* submatrix Q(ilo+1:ihi,ilo+1:ihi). */ /* If SIDE = 'L', then 1 <= ILO <= IHI <= M, if M > 0, and */ /* ILO = 1 and IHI = 0, if M = 0; */ /* if SIDE = 'R', then 1 <= ILO <= IHI <= N, if N > 0, and */ /* ILO = 1 and IHI = 0, if N = 0. */ /* A (input) COMPLEX array, dimension */ /* (LDA,M) if SIDE = 'L' */ /* (LDA,N) if SIDE = 'R' */ /* The vectors which define the elementary reflectors, as */ /* returned by CGEHRD. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. */ /* LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'. */ /* TAU (input) COMPLEX array, dimension */ /* (M-1) if SIDE = 'L' */ /* (N-1) if SIDE = 'R' */ /* TAU(i) must contain the scalar factor of the elementary */ /* reflector H(i), as returned by CGEHRD. */ /* C (input/output) COMPLEX array, dimension (LDC,N) */ /* On entry, the M-by-N matrix C. */ /* On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. */ /* LDC (input) INTEGER */ /* The leading dimension of the array C. LDC >= max(1,M). */ /* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. */ /* If SIDE = 'L', LWORK >= max(1,N); */ /* if SIDE = 'R', LWORK >= max(1,M). */ /* For optimum performance LWORK >= N*NB if SIDE = 'L', and */ /* LWORK >= M*NB if SIDE = 'R', where NB is the optimal */ /* blocksize. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* ===================================================================== */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; c_dim1 = *ldc; c_offset = 1 + c_dim1; c__ -= c_offset; --work; /* Function Body */ *info = 0; nh = *ihi - *ilo; left = lsame_(side, "L"); lquery = *lwork == -1; /* NQ is the order of Q and NW is the minimum dimension of WORK */ if (left) { nq = *m; nw = *n; } else { nq = *n; nw = *m; } if (! left && ! lsame_(side, "R")) { *info = -1; } else if (! lsame_(trans, "N") && ! lsame_(trans, "C")) { *info = -2; } else if (*m < 0) { *info = -3; } else if (*n < 0) { *info = -4; } else if (*ilo < 1 || *ilo > max(1,nq)) { *info = -5; } else if (*ihi < min(*ilo,nq) || *ihi > nq) { *info = -6; } else if (*lda < max(1,nq)) { *info = -8; } else if (*ldc < max(1,*m)) { *info = -11; } else if (*lwork < max(1,nw) && ! lquery) { *info = -13; } if (*info == 0) { if (left) { /* Writing concatenation */ i__1[0] = 1, a__1[0] = side; i__1[1] = 1, a__1[1] = trans; s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2); nb = ilaenv_(&c__1, "CUNMQR", ch__1, &nh, n, &nh, &c_n1); } else { /* Writing concatenation */ i__1[0] = 1, a__1[0] = side; i__1[1] = 1, a__1[1] = trans; s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2); nb = ilaenv_(&c__1, "CUNMQR", ch__1, m, &nh, &nh, &c_n1); } lwkopt = max(1,nw) * nb; work[1].r = (real) lwkopt, work[1].i = 0.f; } if (*info != 0) { i__2 = -(*info); xerbla_("CUNMHR", &i__2); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*m == 0 || *n == 0 || nh == 0) { work[1].r = 1.f, work[1].i = 0.f; return 0; } if (left) { mi = nh; ni = *n; i1 = *ilo + 1; i2 = 1; } else { mi = *m; ni = nh; i1 = 1; i2 = *ilo + 1; } cunmqr_(side, trans, &mi, &ni, &nh, &a[*ilo + 1 + *ilo * a_dim1], lda, & tau[*ilo], &c__[i1 + i2 * c_dim1], ldc, &work[1], lwork, &iinfo); work[1].r = (real) lwkopt, work[1].i = 0.f; return 0; /* End of CUNMHR */ } /* cunmhr_ */