/* cungr2.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Subroutine */ int cungr2_(integer *m, integer *n, integer *k, complex *a, integer *lda, complex *tau, complex *work, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; complex q__1, q__2; /* Builtin functions */ void r_cnjg(complex *, complex *); /* Local variables */ integer i__, j, l, ii; extern /* Subroutine */ int cscal_(integer *, complex *, complex *, integer *), clarf_(char *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *), clacgv_(integer *, complex *, integer *), xerbla_(char *, integer *); /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CUNGR2 generates an m by n complex matrix Q with orthonormal rows, */ /* which is defined as the last m rows of a product of k elementary */ /* reflectors of order n */ /* Q = H(1)' H(2)' . . . H(k)' */ /* as returned by CGERQF. */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows of the matrix Q. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix Q. N >= M. */ /* K (input) INTEGER */ /* The number of elementary reflectors whose product defines the */ /* matrix Q. M >= K >= 0. */ /* A (input/output) COMPLEX array, dimension (LDA,N) */ /* On entry, the (m-k+i)-th row must contain the vector which */ /* defines the elementary reflector H(i), for i = 1,2,...,k, as */ /* returned by CGERQF in the last k rows of its array argument */ /* A. */ /* On exit, the m-by-n matrix Q. */ /* LDA (input) INTEGER */ /* The first dimension of the array A. LDA >= max(1,M). */ /* TAU (input) COMPLEX array, dimension (K) */ /* TAU(i) must contain the scalar factor of the elementary */ /* reflector H(i), as returned by CGERQF. */ /* WORK (workspace) COMPLEX array, dimension (M) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument has an illegal value */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; /* Function Body */ *info = 0; if (*m < 0) { *info = -1; } else if (*n < *m) { *info = -2; } else if (*k < 0 || *k > *m) { *info = -3; } else if (*lda < max(1,*m)) { *info = -5; } if (*info != 0) { i__1 = -(*info); xerbla_("CUNGR2", &i__1); return 0; } /* Quick return if possible */ if (*m <= 0) { return 0; } if (*k < *m) { /* Initialise rows 1:m-k to rows of the unit matrix */ i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m - *k; for (l = 1; l <= i__2; ++l) { i__3 = l + j * a_dim1; a[i__3].r = 0.f, a[i__3].i = 0.f; /* L10: */ } if (j > *n - *m && j <= *n - *k) { i__2 = *m - *n + j + j * a_dim1; a[i__2].r = 1.f, a[i__2].i = 0.f; } /* L20: */ } } i__1 = *k; for (i__ = 1; i__ <= i__1; ++i__) { ii = *m - *k + i__; /* Apply H(i)' to A(1:m-k+i,1:n-k+i) from the right */ i__2 = *n - *m + ii - 1; clacgv_(&i__2, &a[ii + a_dim1], lda); i__2 = ii + (*n - *m + ii) * a_dim1; a[i__2].r = 1.f, a[i__2].i = 0.f; i__2 = ii - 1; i__3 = *n - *m + ii; r_cnjg(&q__1, &tau[i__]); clarf_("Right", &i__2, &i__3, &a[ii + a_dim1], lda, &q__1, &a[ a_offset], lda, &work[1]); i__2 = *n - *m + ii - 1; i__3 = i__; q__1.r = -tau[i__3].r, q__1.i = -tau[i__3].i; cscal_(&i__2, &q__1, &a[ii + a_dim1], lda); i__2 = *n - *m + ii - 1; clacgv_(&i__2, &a[ii + a_dim1], lda); i__2 = ii + (*n - *m + ii) * a_dim1; r_cnjg(&q__2, &tau[i__]); q__1.r = 1.f - q__2.r, q__1.i = 0.f - q__2.i; a[i__2].r = q__1.r, a[i__2].i = q__1.i; /* Set A(m-k+i,n-k+i+1:n) to zero */ i__2 = *n; for (l = *n - *m + ii + 1; l <= i__2; ++l) { i__3 = ii + l * a_dim1; a[i__3].r = 0.f, a[i__3].i = 0.f; /* L30: */ } /* L40: */ } return 0; /* End of CUNGR2 */ } /* cungr2_ */