/* ctrcon.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; /* Subroutine */ int ctrcon_(char *norm, char *uplo, char *diag, integer *n, complex *a, integer *lda, real *rcond, complex *work, real *rwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1; real r__1, r__2; /* Builtin functions */ double r_imag(complex *); /* Local variables */ integer ix, kase, kase1; real scale; extern logical lsame_(char *, char *); integer isave[3]; real anorm; logical upper; extern /* Subroutine */ int clacn2_(integer *, complex *, complex *, real *, integer *, integer *); real xnorm; extern integer icamax_(integer *, complex *, integer *); extern doublereal slamch_(char *); extern /* Subroutine */ int xerbla_(char *, integer *); extern doublereal clantr_(char *, char *, char *, integer *, integer *, complex *, integer *, real *); real ainvnm; extern /* Subroutine */ int clatrs_(char *, char *, char *, char *, integer *, complex *, integer *, complex *, real *, real *, integer *), csrscl_(integer *, real *, complex *, integer *); logical onenrm; char normin[1]; real smlnum; logical nounit; /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* Modified to call CLACN2 in place of CLACON, 10 Feb 03, SJH. */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CTRCON estimates the reciprocal of the condition number of a */ /* triangular matrix A, in either the 1-norm or the infinity-norm. */ /* The norm of A is computed and an estimate is obtained for */ /* norm(inv(A)), then the reciprocal of the condition number is */ /* computed as */ /* RCOND = 1 / ( norm(A) * norm(inv(A)) ). */ /* Arguments */ /* ========= */ /* NORM (input) CHARACTER*1 */ /* Specifies whether the 1-norm condition number or the */ /* infinity-norm condition number is required: */ /* = '1' or 'O': 1-norm; */ /* = 'I': Infinity-norm. */ /* UPLO (input) CHARACTER*1 */ /* = 'U': A is upper triangular; */ /* = 'L': A is lower triangular. */ /* DIAG (input) CHARACTER*1 */ /* = 'N': A is non-unit triangular; */ /* = 'U': A is unit triangular. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* A (input) COMPLEX array, dimension (LDA,N) */ /* The triangular matrix A. If UPLO = 'U', the leading N-by-N */ /* upper triangular part of the array A contains the upper */ /* triangular matrix, and the strictly lower triangular part of */ /* A is not referenced. If UPLO = 'L', the leading N-by-N lower */ /* triangular part of the array A contains the lower triangular */ /* matrix, and the strictly upper triangular part of A is not */ /* referenced. If DIAG = 'U', the diagonal elements of A are */ /* also not referenced and are assumed to be 1. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* RCOND (output) REAL */ /* The reciprocal of the condition number of the matrix A, */ /* computed as RCOND = 1/(norm(A) * norm(inv(A))). */ /* WORK (workspace) COMPLEX array, dimension (2*N) */ /* RWORK (workspace) REAL array, dimension (N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Statement Functions .. */ /* .. */ /* .. Statement Function definitions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --work; --rwork; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); onenrm = *(unsigned char *)norm == '1' || lsame_(norm, "O"); nounit = lsame_(diag, "N"); if (! onenrm && ! lsame_(norm, "I")) { *info = -1; } else if (! upper && ! lsame_(uplo, "L")) { *info = -2; } else if (! nounit && ! lsame_(diag, "U")) { *info = -3; } else if (*n < 0) { *info = -4; } else if (*lda < max(1,*n)) { *info = -6; } if (*info != 0) { i__1 = -(*info); xerbla_("CTRCON", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { *rcond = 1.f; return 0; } *rcond = 0.f; smlnum = slamch_("Safe minimum") * (real) max(1,*n); /* Compute the norm of the triangular matrix A. */ anorm = clantr_(norm, uplo, diag, n, n, &a[a_offset], lda, &rwork[1]); /* Continue only if ANORM > 0. */ if (anorm > 0.f) { /* Estimate the norm of the inverse of A. */ ainvnm = 0.f; *(unsigned char *)normin = 'N'; if (onenrm) { kase1 = 1; } else { kase1 = 2; } kase = 0; L10: clacn2_(n, &work[*n + 1], &work[1], &ainvnm, &kase, isave); if (kase != 0) { if (kase == kase1) { /* Multiply by inv(A). */ clatrs_(uplo, "No transpose", diag, normin, n, &a[a_offset], lda, &work[1], &scale, &rwork[1], info); } else { /* Multiply by inv(A'). */ clatrs_(uplo, "Conjugate transpose", diag, normin, n, &a[ a_offset], lda, &work[1], &scale, &rwork[1], info); } *(unsigned char *)normin = 'Y'; /* Multiply by 1/SCALE if doing so will not cause overflow. */ if (scale != 1.f) { ix = icamax_(n, &work[1], &c__1); i__1 = ix; xnorm = (r__1 = work[i__1].r, dabs(r__1)) + (r__2 = r_imag(& work[ix]), dabs(r__2)); if (scale < xnorm * smlnum || scale == 0.f) { goto L20; } csrscl_(n, &scale, &work[1], &c__1); } goto L10; } /* Compute the estimate of the reciprocal condition number. */ if (ainvnm != 0.f) { *rcond = 1.f / anorm / ainvnm; } } L20: return 0; /* End of CTRCON */ } /* ctrcon_ */